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Introduction

Circulating tumour cells (CTCs) were identified and first 
proposed as part of the fundamental process of cancer 
dissemination in the mid-19th century by the Australian 
pathologist, Thomas Ashworth (1). Since more than 90% of 
cancer- related deaths are thought to be due to metastatic 
disease (2,3), it is not surprising that the presence of CTCs 
indicates metastatic disease is generally linked with poor 
prognosis (4,5) and dissemination of tumour cells starts 
at early stages of disease progression (5,6). However, the 
mechanism of dissemination and the accompanying biology 
of CTCs are still poorly understood.

In this review, we will present our view of the technical 
challenges of working with CTCs as well as some of the key 

biological and clinical findings including the potential use of 
CTCs in the clinical management of lung cancer including 
their use as prognostic, pharmacodynamic and predictive 
biomarkers. We will reference CTC studies across all 
cancer types but will highlight studies addressing lung 
cancer CTCs. Given the broad scope of CTC research and 
the large numbers of CTC publications we cannot provide 
an exhaustive coverage of the subject so for those requiring 
more detail we would recommend recent excellent CTC 
reviews (7-9). 

Technical challenges

The biggest challenge for CTC research is the rarity of 
CTCs which is estimated at a level of one CTC per 106–107 
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white blood cells (WBCs). Detecting and isolating rare 
CTCs from the bloodstream requires sensitive technologies 
that can efficiently pick out these cells amongst the millions 
of other blood cells. Several of the key technical challenges 
that face CTC researchers and potential solutions are 
addressed in the following section.

Identification and isolation of CTCs

There are three broad basic strategies for CTC enrichment, 
identification and analysis from whole blood: (I) negative 
selection through removal of blood cells  thereby 
enriching the remaining CTCs; (II) positive selection of 
CTCs; and (III) analyse all cells accompanied by CTC 
identification through intensive image analysis. Each of 
these strategies has their own strengths and weaknesses so 
the choice of approach should be guided primarily by the 
clinical/biological aim of the study as well as pragmatic 
considerations such as cost and time available.

Many negative selection approaches are based on the 
availability of antibodies recognising blood specific cell 
surface epitopes and the fact that these epitopes are not 
widely expressed in cancer cells. The attraction of this 
approach is that by targeting the unwanted cells, in this 
case red blood cells (RBCs) and WBCs, the CTCs are left 
untouched and are less likely to be influenced or damaged 
by the enrichment approach. The commercial RosetteSep™ 
kit (StemCell Technologies) provides a simple method to 
remove the bulk of mature blood cells including both RBCs 
and WBCs and has been shown to leave behind viable 
CTCs that can be cultured (10,11) or implanted into mice 
and grown as tumours (12-14). Recently, a new enhanced 
negative depletion strategy named Multi-marker Immuno-
magnetic Negative Depletion Enrichment of CTCs 
(MINDEC) has been developed where blood cell fraction 
is isolated by density gradient centrifugation followed by 
the use of superparamagnetic beads coupled with a cocktail 
of antibodies against different blood classes (15). Although 
negative selection approaches have proven useful, due to the 
overwhelming numbers of WBCs compared to CTCs, the 
output from negative selection is often heavily contaminated 
with WBCs which may interfere with downstream CTC 
based assays. 

For positive selection of CTCs there are two major 
approaches based either on physical properties such as size, 
density and deformability or biological properties such 
as cell surface epitopes. The most successful and widely 
used CTC technology is the FDA recognised CellSearch® 

system (Jannsen Diagnostics, Raritan, NJ, USA) which is a 
semi-automated platform that employs ferromagnetic beads 
coated with the epithelial cell surface marker, EpCAM to 
“pull out” or enrich epithelial CTCs (4). Following the 
initial CTC enrichment CellSearch® utilises automated 
fluorescence staining to identify and enumerate CTCs based 
on their cell/nuclear morphology along with detectable 
expression of epithelial cytokeratins and low expression of 
the WBC marker CD45 (4). Since CellSearch® has been 
shown to be both reliable and reproducible it has been 
widely used in multi-center trials and CellSearch® CTC 
counts have been shown to be prognostic for metastatic 
breast (4), lung (16), colorectal (CRC) (17) and prostate 
cancer (18). A key feature of the CellSearch® platform 
which led to its widespread uptake has been the use of 
the CellSave® preservative blood collection tube (Jannsen 
Diagnostics, Raritan, NJ, USA) which allows whole blood 
to be stored or shipped at room temperature for up to 
96 h prior to analysis (4,17). Other systems have been 
described which also employ an EpCAM-based enrichment 
technologies including the CTC-Chip (19), MagSweeper 
(Stanford University, USA) (20), iCHIP (Massachussets 
General Hospital Center, USA) (21) and GILUPI 
CellCollector® (GILUPI Nanomedizin, Germany) (22) 
(Table 1) Since EpCAM-based enrichment technologies are 
limited to epithelial CTC detection alternative strategies 
are required for detection of CTCs which are not epithelial. 
For example, CellSearch® has developed a melanoma 
tailored enrichment and staining kit, where melanoma 
CTCs are captured via the CD146 cell surface marker (also 
known as melanoma cell adhesion molecule or MCAM) and 
positively stained for the high molecular weight melanoma 
associated antigen (HMW-MAA) while CD45 and CD34 
are used as WBC markers (23).

Although positive selection utilising cell surface markers 
has been very successful it is also clear that there are 
CTCs which change or lack these markers (see further 
discussion regarding EMT below) and this has prompted 
the development of marker-independent CTC enrichment 
platforms. Marker-independent CTC enrichment platforms 
are generally devices which retain CTCs on the basis 
of physical properties such as size (ISET®, Rarecells 
Diagnostics, France) (24), cell size and deformability 
(Parsortix™ Cell Separation, ANGLE plc, UK) (25,26)  
(Table 1) and flow properties (ClearCell®, Clearbridge 
Biomedics, Singapore) (27) (Table 1). Captured CTCs can 
be then recovered for further molecular analysis, however 
CTCs may not be always larger and stiffer than WBCs, thus 
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can be washed away through the filters (28). 
More recently, imaging and scanning technologies have 

been developed to a point where CTCs can be visualised, 
identified and isolated without any prior enrichment (8). 
A number of integrated systems have been described for 
the interrogation of whole blood including high definition 
single cell analysis (HD-SCA) (29) and the RareCyte system 
(RareCyte, Seattle, WA, USA) (30) (Table 1). Both are based 
on the principle of “no cell left behind” where all nucleated 
blood cells are deposited on microscope slides and stained 
with markers allowing discrimination of blood and non-
blood cells thereby increasing the possibility to detect rare 
CTCs subpopulations (8). An additional feature for both the 
HD-SCA and RareCyte® platforms is that, once candidate 
CTCs have been identified, they have an integrated capacity 
to isolate target cells directly from the slide in a format 
that is compatible with single cell molecular analysis. In 
contrast, most CTC enrichment technologies require an 
additional step for CTC visualisation and isolation. This has 
been achieved in a variety of ways including fluorescence-
activated cell sorting (FACS) (31), CTC visualisation 
followed by isolation via micromanipulation (21,32-34), and 
the DEPArray™ automated system which incorporates cell 
manipulation via electrostatic charge (35,36) (Table 1).

CTC molecular analysis

The striking increase in the sensitivity of DNA and RNA 
technologies have been pivotal for CTC research since they 
have enabled researchers to confirm the tumour identity 
of cells identified by morphology or tissue specific surface 
markers by establishing that they harbour tumour specific 
molecular signatures. Early observations generally using 
targeted sequencing or PCR demonstrated the presence 
of tumour specific mRNAs or DNA changes in either 
whole blood or samples enriched for CTCs. Stathopoulou 
et al. developed an assay for detection of cytokeratin-19 
(CK-19) mRNA in peripheral blood of patients with breast 
cancer (37-39). Similarly, in CRC a panel of genes including 
carcinoembryonic antigen (CEA), CK-19, CK-20 and CD133 
has been used to verify the presence of colorectal tumour cells 
in enriched blood samples (40). However, any study carried 
out on enriched CTC populations will inevitably suffer from 
reduced sensitivity through the effective dilution caused by 
varying levels of contaminating WBCs.

Over the last decade, advances in both CTC enrichment 
protocols and molecular methodologies has culminated in a 
range of successful strategies for genome wide amplification 

and analysis of single CTCs which have extended many 
of the observations made with enriched CTCs. There are 
several advantages of single CTC analysis including: (I) 
single CTC analysis is 100% pure (assuming a CTC was 
isolated) and avoids any complications or dilution of signal 
due to contaminating cells; (II) since a cell has on average 
only two DNA copies of each gene and around 100,000 
mRNA molecules (41) the degree of next generation 
sequencing (NGS) required for generating a representative 
single cell snapshot is relatively low; (III) single cell genomic 
analysis can unambiguously identify co-existing genetic 
changes; (IV) the integration of RNA and DNA analysis 
from the same cell can establish linkage between the genetic 
alterations and alterations in RNA pathways (42); (V) single 
cell data provides an ideal means of establishing the degree 
of heterogeneity and estimating tumour evolution (43,44). 
For single CTC molecular analysis the main problems 
encountered are largely technical, financial and logistical. 
Since the amplification process necessary for single CTC 
analysis is extremely sensitive it is critical that steps are 
taken to avoid or identify potential contamination such as 
defining separate clean areas and use of negative controls. 

Given the vanishingly small amounts of DNA (6.6 pg) 
present in a single cell, whole genome amplification (WGA) 
is a pre-requisite for extensive genomic analysis of CTCs. 
The widespread use of CTC WGA was pioneered by 
Christoph Klein and co-workers through the establishment 
of a simple single tube amplification system (available 
as the AMPLI1™ WGA kit, Silicon Biosystems) based 
on restriction enzyme digestion, ligation of primer and 
subsequent PCR amplification (45). There are now many 
commercially available single cell WGA systems to choose 
from generally based on PCR (46,47) or linear amplification 
(48-50). There are obvious pros and cons for each WGA 
system (51) and the choice of which WGA system to use 
needs to be based on the clinical/scientific aim of the study, 
whether the WGA system is compatible with the CTC 
enrichment process used and the resources available. 

Following WGA of CTCs one of the most widely used 
approach for CTC molecular analysis has been establishing 
genome copy number alterations (CNA) which provides a 
simple snapshot of each CTC which will allow comparisons 
between CTCs and, when available, the matching tumour 
[Figure 1 provides examples of non-small cell lung cancer 
(NSCLC) CTC CNA profiles]. Initial single cell studies 
compared targeted mutation profiles and copy number 
profiles of CTCs with the primary tumours and metastases 
of the corresponding patients. One such study of circulating 
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Figure 1 Determining CTC copy number alterations (CNA). (A) Shows a schematic outline of the CTC NGS analysis workflow used. (B) 
Presents genome wide CNA profiles and accompanying images of single CTCs and WBCs isolated by epitope dependent and independent 
technologies from two patients with NSCLC. For all four cells the CNA pattern is presented in a linear format with marked copy number 
increases shown in red and losses in blue alongside the fluorescent stained images of the starting cells. The top panel presents the CNA 
patterns and images of a NSCLC cytokeratin (CK) positive, CD45 negative CTC and a CK negative, CD45 positive WBC obtained 
following CellSearch® EpCAM enrichment and subsequent CK and CD45 staining with CK staining depicted as yellow, CD45 as green and 
nuclear staining (DAPI) as blue. The bottom panel presents the CNA patterns and images of a NSCLC vimentin (VIM) positive, CD45/
CD31 negative CTC and a VIM positive, CD45/CD31 positive WBC obtained following Parsortix™ size enrichment and subsequent VIM 
plus combined CD45/CD31 staining with VIM staining depicted as red, CD45/CD31 as green and nuclear staining (DAPI) as blue. CTC, 
circulating tumour cell; NGS, next generation sequencing; NSCLC, non-small cell lung cancer.
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melanoma cells using single cell comparative genomic 
hybridisation (single-cell CGH) revealed multiple CNA 
consistent with melanoma which was in sharp contrast to 
the normal cells that revealed balanced CGH profiles (52).  
In addition, the use of hierarchical clustering provided 
a means of establishing linkages between each cell and 
suggested a clonal origin of the melanoma cells examined (52). 

For de novo detection of variants in single cells there is 
a profound challenge of how to distinguish the artefactual 
“variants” that accrue during the million fold or more 
amplification during WGA from the actual mutations 
present in the starting cell. Although it is difficult to be 
completely certain of true biological origin of variants called 
in a single cell or CTC, the use of suitable controls, technical 
replicates, biological replicates and bioinformatics can be 
used to establish the extent of amplification errors (53). It 
may be possible to reduce the impact of amplification errors 
by incorporating molecular bar codes (54) or using low error 
amplification processes (53,55) but it is not yet clear how 
much benefit these strategies will bring. For the moment the 
most effective means of identifying true variants in CTCs is 
the use of biological replicates, i.e., identify variants seen in 
two or more independent CTCs (56).

In addition to the advances in genomic analysis of CTCs 
there have been similar exciting advances in CTC RNA 
profiling and particularly in the plethora of single cell RNA-
Seq methods that have emerged in the last 5 years (57). The 
attraction of genome-wide RNA profiling of CTCs is that it 
can give a broad picture of the biological activity of the cell 
including pathway activation and the presence of expressed 
drug targets. Transcriptomic profiles of CTCs can be 
viewed as an emergent property of all of the genetic and 
epigenetic changes within the cell and as such may be easier 
to characterise than the often complex genomic changes 
seen in CTCs. The ability to carry out effective single 
CTC RNA profiling is largely driven by CTC enrichment 
protocols and the impact they have on the RNA within the 
final enriched cell. Since RNA is chemically more labile 
than DNA and subject to enzymatic degradation it is clear 
that CTC enrichment and identification strategies that 
work well for DNA isolation and genomic analysis may not 
be suitable for RNA analysis. For example, the CellSearch® 
platform that utilises the CellSave® preservative blood 
tube works well for DNA but it is clear that both the 
preservative and the downstream cell processing steps have 
a negative impact on RNA quality. For this reason most 
genome wide CTC RNA profiling methods have avoided 
the use of preservative and have isolated viable cells suitable 

for direct lysis and processing. A number of groups have 
now described a broad range of effective genome wide 
and targeted RNA approaches applied to either enriched 
pools or single CTCs (36,58,59). Transcriptomic profiling 
of CTCs is now providing valuable insights into CTC 
biology (see discussion below) and further advances in 
methodologies such as combined RNA/DNA SCA (42) 
and droplet based analysis of many 1000s of cells (60) will 
provide an even greater depth of understanding. 

Blood sampling considerations

Since CTCs are generally very rare it is also important to 
consider the volume of blood sampled and the implications 
this has for effective CTC identification and isolation (61).  
Fischer et al. in 2008 demonstrated the possibility of 
combining cell detection approach such as CellSearch® 
along with diagnostic leukapheresis (DLA) to increase the 
possibility of detecting CTCs (62). In this study, they 
increased the CTC detection rate in patient samples from 
a range of cancer types by 44% by using DLA followed 
by CellSearch® as compared to using 7.5 mL of blood on 
CellSearch®. DLA is a clinically safe approach that enables 
detection of rare CTCs from larger volume of blood. The 
other approach that can increase effective blood sampling 
volumes is the GILUPI CellCollector® which introduces a 
EpCAM-coated Seldinger guide wire into the cubital vein 
allowing CTC enumeration and isolation from the entire 
circulating blood in an individual patient (22).

Understanding CTC biology

Having established an impressive tool kit for isolating and 
analysing CTCs recent research is now beginning to unravel 
the complex biology of CTCs. In addition to examining the 
relationship between CTCs, primary tumour and metastasis 
it is important to establish that CTCs are themselves 
tumourigenic and if properties of CTCs can shed light on 
the process of metastatic spread. Two key hallmarks of the 
malignant tumour cells responsible for the initiation of the 
metastatic process are motility and invasiveness (63) and 
it is likely that there will be features in CTCs that reflect 
these characteristics. The dissemination of cells from the 
primary tumour and resultant metastatic seeding may well 
start early even at stages where primary tumour is thought 
to be localised with no overt metastases (5,64-66). Tumour 
cells that enter the circulatory system to become CTCs do 
so through a process known as intravasation and the rate 
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of intravasation from solid tumours in patients is largely 
unknown although several clinical and animal model studies 
suggest that millions of tumour cells are shed even from 
small tumours (67). Although most cells that intravasate 
die (68,69), a small proportion of cells exit the vasculature 
to enter organs, a process known as extravasation and 
colonise distant organs. CTCs as wells as their pre-cursors 
and descendants must overcome many obstacles such as 
immune surveillance and physical/cellular barriers in order 
to survive in the circulatory system and to colonise the host 
organ (70,71). The biological processes associated with 
propagation, survival and subsequent colonisation of organs 
distant to the primary tumour are discussed in the following 
section. 

Tumour and CTC heterogeneity

An early model of clonal evolution linked to the generation 
of genetic diversity in tumours was proposed in 1976 (72) 
and the emergence of intra-tumour heterogeneity was 
confirmed experimentally in murine models (73). More 
recently, NGS technologies have been used to understand 
the breadth and depth of this overwhelming genetic 
diversity in primary and the metastatic tumours (74-79). 

NGS and bioinformatic strategies have been developed 
and applied to tumour tissue, which have allowed both a 
measure of heterogeneity and the generation of phylogenetic 
models which provide a picture of the inferred development 
and branched evolution of the tumour (78,80-82).  
Advances in NGS technologies now allow routine analysis 
of single cells or nuclei and this has been fruitfully applied 
to dissociated tumour cells to provide unambiguous 
detection of tumour sub-clones (81,83-86). The picture that 
has emerged from both whole tissue and single cell tumour 
analysis is one of considerable intra and inter patient tumour 
heterogeneity that is most likely contributing to metastatic 
spread and the emergence of therapy resistance. Studies 
in animal models have provided evidence that this cellular 
and molecular heterogeneity is matched by functional 
heterogeneity whereby only a subset of cells, often known 
as tumour initiating cells or tumour stem cells, are capable 
of initiating tumours in solid tumours such as colon (87,88), 
pancreas (89), melanoma (90), liver (91) and brain (92). 

Disseminated tumour cells (DTCs) provide another 
fascinating view of cellular heterogeneity since in some 
malignancies, notably in breast cancer, DTCs are often 
detectable in apparently healthy organs such as bone marrow 
and can reside there for many years after surgical removal 

of the primary tumour until signs of overt malignant 
growth (93,94). Bone marrow can function as a reservoir for 
DTCs (71,95) not only for breast cancer but also for other 
malignancies such as lung cancer and CRC which do not 
usually metastasise in the bone (65,96). It has been proposed 
that in the vast majority of cancer patients, DTCs can enter 
state of proliferative quiescence, process known as cellular 
dormancy which can represent the main reason why DTCs 
evade systemic therapy persisting as minimal residual disease 
(71,97,98). Genetic and transcriptomic characterisation of 
DTCs could help understand the nature, origin and biology 
of this cancer cell type in the individual patients and could 
subsequently provide extremely valuable information of 
the future course of the patients’ disease. In breast and 
prostate cancer, DTCs were found with fewer copy number 
changes compared to the primary tumour, suggesting that 
the dissemination may happen at an early tumour stage (99). 
In contrast, Demeulemeester et al. demonstrated by single 
cell sequencing of DTCs isolated from the bone marrow 
of breast cancer patients that they originate from either the 
main primary tumour clone, primary tumour subclones or 
subclones in an axillary lymph node metastasis, indicating 
that breast cancer dissemination may arise relatively late in 
tumour evolution (64).

Although several groups have also reported the presence 
of DTCs in the bone marrow of patients with localised 
NSCLC, and shown a correlation with worse clinical 
outcome (65,100,101) these studies included relatively small 
numbers of patients (particularly in comparison to breast 
cancer) making it unclear to what extent NSCLC is driven 
by DTCs. DTCs were also detected in the bone marrow 
of 18% of patients with SCLC using a RT-PCR approach 
to detect levels of gastrin-releasing peptide, which is 
preferentially expressed in SCLC (102). However, given the 
rapid aggressive nature of SCLC and the high numbers of 
CTCs observed in this disease it is not clear if there is a role 
for a long term DTCs located in the bone marrow.

Although it is likely that the first CTCs arise from 
the primary tumour and play a role in metastasis, once 
metastasis are established they can also be a source of 
CTCs. In one SCLC study CNA and mutational profiles 
were established from CTCs, primary tumor as well 
metastasis and the comparison indicated that there was 
more overlap between CTCs and metastasis than between 
CTCs and the primary tumor (103). Given the aggressive 
nature of SCLC it is not surprising that metastasis can also 
contribute to CTC based spread and further studies are 
required to establish if CTC contribution from developing 
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metastasis is a general feature of all cancers. A CRC study 
revealed similar results with CNA and mutational profiles 
of CTCs presenting with more overlap with liver metastases 
than the primary tumour (43). 

CTC-derived tumour xenografts (CDX)

One of the major challenges for CTC research is to 
establish if there is any functional capacity of CTCs 
and trace this back to molecular changes that are shared 
by CTCs and tumour. Recently it has been shown that 
CTCs isolated from patient blood can form tumours 
when introduced into immune compromised mice firmly 
establishing that CTCs are viable and capable of forming 
tumours (12-14). In a study investigating breast cancer, 
CTCs isolated from 110 patients were transplanted into 
the femoral medullar cavity of immunocompromised mice 
and three patient-derived CTCs were able to form multiple 
metastases (104). In a SCLC CDX study it was also 
established that CTCs from both patients who responded 
to chemotherapy (chemosensitive) and CTCs from patients 
who did not (chemorefractory) were capable of forming 
tumours in immunocompromised mice and that when 
mice harbouring CDXs were treated with platinum and 
etoposide the response seen mirrored the response observed 
in the corresponding patient (12). In the same SCLC study, 
genomic analyses revealed that CellSearch® CTCs and the 
matching CTC-derived CDX are highly related in terms of 
both copy number and TP53 and RB1 mutations (12). CTCs 
were also shown to be tumorigenic in melanoma, where 
CDXs were established with a success rate of 13% and 
they had similar metastatic tropism as the corresponding  
patient (14). 

Epithelial-to-mesenchymal transition (EMT)

The key feature of EMT relevant to CTC biology 
is the switch from relatively restricted or anchored 
epithelial cell to a more motile flexible mesenchymal 
cell type (105). EMT was first coined by embryologists 
and describes cell migration from the ectoderm during 
the gastrulation process to produce the mesoderm and 
is now also referred to as type I EMT (106,107). A 
similar process was also observed in wound healing and 
fibrosis and this is referred to as type II EMT (108). 
For CTCs it has been proposed that EMT facilitates 
intravasation from primary epithelial tumour through 
the switch to a mesenchymal phenotype associated with 

increased cell motility and migration (105,109). However,  
histopathological examination of metastatic tumours reveals 
a predominantly epithelial tumour and relatively fewer 
mesenchymal characteristics (110) indicating that, for CTCs, 
there is a reciprocal mesenchymal-to-epithelial transition 
(MET) associated with extravasation and reestablishment of 
an epithelial metastasis (5,109,111,112). 

During EMT there is a loss or redistribution of the 
epithelial adhesion molecule, E-cadherin, a trans-membrane 
glycoprotein that is responsible for the tight junction between 
epithelial cells and integral to apical-basal polarity (111).  
Along with the modulation of cell-cell contact markers, 
EMT is also associated with remodelling of the cytoskeleton 
with an increase in vimentin-rich intermediate filaments 
providing a more flexible mesenchymal cellular structure 
as opposed to the more rigid cytokeratin-rich starting  
point (113). The process of EMT can be triggered by 
paracrine signalling of several factors such as TGF-beta, 
WNT or interleukin-6 (105,114,115) and these triggers in 
turn activate transcription factors such as Snail, Twist and 
Zeb that maintain the mesenchymal phenotype by autocrine 
signalling (115). These EMT associated alterations have 
also been observed in CTC sub-populations in breast 
cancer by single cell RNA-seq analysis (116). Determining 
the biological relevance of EMT for CTC mediated 
metastatic spread is confounded by the fact that EMT and 
MET are processes that occur over time (it is not clear how 
long either process will be) and that metastatic spread may 
occur either continually or sporadically. In this context, 
several studies have reported identification of CTCs with 
mesenchymal markers in patients with advanced stage of 
breast cancer as compared to patients with localised breast 
cancer (117). To get a clearer picture of the relevance of 
CTC biology including EMT it is possible to take advantage 
of the simplicity of blood sampling and establish multiple 
longitudinal blood samples to build a picture of CTC 
biology during the course of disease progression. Yu et al.  
applied this strategy to monitor breast cancer CTCs and 
identified emergence of a mesenchymal CTC phenotype 
in samples from patients undergoing chemotherapy when 
compared to samples taken at baseline (116). This study 
utilised RNA in situ hybridization to detect epithelial and 
mesenchymal genes and highlighted the role of TGF-beta 
activation along with the transcription factor FOXC1 in 
EMT in breast cancer CTCs. EMT and MET switching in 
CTCs can also poses a challenge for detecting the resultant 
mesenchymal CTCs since they are in a hematopoietic cell 
environment consisting of many mesenchymal cells this 
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will be expanded on in the section summarising technical 
challenges.

One of the earliest reports of EMT in CTCs from 
patients with NSCLC compared CTC identification and 
enumeration using epithelial epitopes to enrich and stain 
CTCs (CellSearch®) to an epitope independent CTC 
identification system based on size selection (ISET®) 
and showed both increased CTC numbers as well as 
heterogeneous expression of EMT markers detected using 
the ISET® approach (112). Subsequently, other studies 
in SCLC (112), NSCLC (118), head and neck (119), 
breast (117,120) and prostate (120) cancer supported the 
observation of heterogeneous expression of mesenchymal 
and epithelial markers in CTCs. Although, in patients 
with NSCLC the CellSearch®-ISET® comparison 
revealed more NSCLC CTCs detected by ISET® than 
CellSearch® both systems provided CTC numerical 
readouts that were prognostic suggesting both EpCAM 
positive and negative CTCs may play a role in tumour 
spread (121).

A recent examination of  blood samples from a 
patient with NSCLC revealed the presence of both 
cytokeratin positive CTCs expressing or not expressing 
the epithelial marker EpCAM suggesting that epithelial 
markers alone may not be sufficient for complete CTC 
enumeration (122). Interestingly, the authors went on to 
show only the EpCAM positive CTCs were associated 
with clinical outcome suggesting that, for this patient 
cohort, the EpCAM negative CTCs may not play a role 
in propagating the disease (122). Also, a study in a mouse 
model of SCLC identified a population of long term tumour 
propagating cells and this population presented with marked 
high expression of EpCAM and CD24 which is also prevalent 
in human primary SCLC tumours (123). Moreover, in the 47 
attempts to generate CDX models (12), the 15 human blood 
samples that generated a mouse model also presented 
with more than 50 EpCAM positive CTCs in 7.5 mL 
suggesting that EpCAM positive CTC subpopulation that 
has tumour-initiating capacity (123).

There is an unmet requirement of comprehensive 
evaluation of markers associated with mesenchymal and 
epithelial characteristics that will allow assess the degree 
of EMT in different solid tumour types. This type of 
study has the potential to explain the low yield of EpCAM 
positive NSCLC CTCs on CellSearch® (5) and further 
highlights the need to combine both CTC enrichment 
technologies and analytical methods to more clearly 
understand the underlying CTC biology.

Vascular mimicry (VM)

In addition to CTCs adopting a mesenchymal phenotype 
which may facilitate intravasation it is also been recently 
reported that CTCs may also take on a vascular phenotype 
through a process known as VM (124). The term VM was 
first coined by Mary Hendrix and described the formation 
of tumour-derived blood vessels and it was hypothesised 
that this may provide an easy access for tumour cells to 
the bloodstream (125). VM was first described in human 
melanoma where it was shown that tumour cells shown to 
co-express endothelial and tumour markers and formed 
blood vessels (125) and further studies have given insights 
in VM induction across a variety of cancer types including 
breast, ovary, lung, prostate, bladder cancer (126). VM 
has been associated with tumour dissemination and  
metastasis (127) and in SCLC it has been shown that a 
subpopulation of CTCs co-express VE-cadherin (a VM 
marker) as well as epithelial cytokeratins indicating VM is 
involved in CTCs dissemination (124).

Circulating tumour microemboli (CTM)

Once CTCs arrive in the blood stream the next problem 
they face is to survive in the circulation. Reports of tumour 
cell clusters or CTM in the blood stream of patients with 
lung, colon, kidney and prostate cancer (16,128-130) 
have indicated that inclusion within a CTM may provide 
protection for CTCs particularly since the presence of 
CTMs is linked with poor prognosis (16,131). Circulating 
tumour emboli have been defined as groups of tumour cells 
either alone or associated with fibroblasts (132), leukocytes 
(133,134), endothelial cells (135-137) or platelets (138-140). 
There is growing evidence suggesting the co-operative 
behaviour exhibited by cells within CTMs can promote 
mutual survival and increased tumorigenic potential 
(16,33,141-144). It has also been suggested that interactions 
between blood cell and platelets can benefit both CTMs 
and single CTCs by protecting them from the host immune 
system (134,145-147).

Cellular cooperation has been elegantly demonstrated 
using a model derived from hamster oral keratinocytes 
of both mesenchymal and epithelial cells (148). At the 
subcutaneous site, injection of either pure population of 
cells formed tumours. However, only the mesenchymal 
cells entered the blood stream but neither cell type alone 
was capable of forming lung metastases. If pure populations 
of cells were injected intravenously, only the epithelial 
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cell population formed lung metastases. When mixed 
population of cells were subcutaneously injected, although 
both cell types entered the blood stream the epithelial 
cells formed the lung metastases. This study shed light on 
the cooperation between cell types in transit which could 
be crucial in the metastatic cascade. In SCLC, a mouse 
model was used to examine the relevance and potential 
co-operation between neuroendocrine and mesenchymal 
tumour cells (144). The introduction of either cell type 
individually into immunocompromised mice resulted in the 
formation of local tumours without any liver metastasis. 
However, both cell types administered together resulted 
in formation of liver metastases along with the local  
tumour (144) and preformed CTMs injected into mice have 
a higher propensity to initiate metastases when compared 
to single cells suggesting a survival advantage of the CTMs 
(16,133,149).

Given the growing body of evidence it seems likely that 
CTMs play a pivotal role in tumour dissemination. However 
a number of questions remain unanswered regarding 
CTMs such as what is the role of cell heterogeneity 
(including blood cells) within CTMs and how do CTMs 
traverse narrow capillaries? Intriguingly, recent modelling 
using microscale devices, computational simulations and 
animal studies provides evidence that clusters can transit 
through capillaries by unfolding into single-file conga lines 
providing a potential explanation for how CTMs can travel 
throughout a patient’s body and seed distant sites (150).

CTCs and clinical utility

Along with helping us to understand the biology of primary 
and metastatic cancer, an examination of CTCs may also 
provide clinical benefit in the areas of: early detection; 
prognostic/predictive biomarkers; drug target identification; 
monitoring disease response/progression and identifying 
mechanisms of drug resistance. In this section, we address 
the potential clinical utility of CTCs.

Early detection

Early detection of disease is crucial for effective treatment 
of cancer. For example, SCLC is generally diagnosed when 
the disease is well advanced and treatment does not provide 
long term benefit. In general, the numbers of CTCs present 
in a 7.5 mL blood sample correlates with clinical staging; 
with the highest numbers seen in patients with metastases 
and lower numbers in patients without overt metastases 

(151,152). However, a recent study has demonstrated 
the predictive value of CTCs in early NSCLC where 
patients with chronic obstructive pulmonary disease 
(COPD) harboured detectable CTCs and then developed 
lung nodules 1–4 years later with four patients diagnosed 
with invasive adenocarcinoma and a fifth diagnosed with 
squamous cell carcinoma (153). However, in the same study 
there was a clear false positive rate since three patients 
who harboured detectable CTCs did not develop overt 
cancer (153). Clearly the potential for using CTCs in 
early detection needs to be further explored particularly 
using broader CTC detection systems in large screening 
programs.

Prognostic biomarkers

Prognostic biomarkers are indicators of the patient’s overall 
clinical outcome including progression free survival (PFS) 
and overall survival (OS) (154). With a number of emerging 
therapeutic options for the treatment of oligometastatic 
disease including local radiotherapy and immunotherapy 
that could potentially have an impact on the PFS in 
patients, the potential of CTCs as prognostic markers has 
been explored by a multitude of groups. The FDA have 
recognised the prognostic utility of the CellSearch® platform 
in many solid cancers such as breast (4), prostate (18)  
and CRC (17). The presence of more than 5 CTCs in 
breast (4) and prostate (18) and 3 CTCs in CRC (17) per 
7.5 mL of blood correlates positively with shorter OS. 
This prognostic utility of CellSearch® CTCs has also been 
demonstrated for NSCLC where the CTC count cut-off 
is 5 CTCs per 7.5 mL of peripheral blood (5). However, 
SCLC is one of the solid tumours where the CTCs are 
more abundant than any other solid tumour thus far 
reported with a range of 0–44,896 cells per 7.5 mL blood 
and hence the corresponding CellSearch® CTC count cut-
off for SCLC is set at a higher value of 50 CTCs per 7.5 mL  
blood (16). A NSCLC study using the ISET® CTC 
technology (CTCs enriched based on cell size) examined 
bloods from 208 patients with stages I–IV identified CTCs 
in 50% of patients (155). Although, this study found no 
correlation between the numbers of CTCs and the staging 
of the disease, it concluded that a threshold of >50 CTCs 
corresponded to shorter PFS and OS (155). However, a 
similar ISET® CTC study of 101 stage III/IV NSCLC 
patients showed a threshold of 5 CTCs in 7.5 mL blood 
corresponded with poor prognosis (5) indicating potential 
differences in the patients recruited to each study and also 
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highlighting the need for standardisation of CTC calling.
The prognostic relevance of CTC clusters or CTMs has 

also been discussed in many studies. For example, CTMs 
were detected by ISET® technology in 43% of patients 
with stage IIIB/IV NSCLC (16) and in an independent 
study using HD-CTC assays CTMs were seen in 50% 
of patients with stage I–IV NSCLC (156) Both studies 
highlighted the prognostic value of CTMs. Furthermore, 
analysis of pulmonary vein blood in patients with NSCLC 
also revealed the existence of CTCs and CTMs in 33% of 
patients which predicted tumour recurrence and poorer 
disease-free survival (33,66).

Predictive biomarkers

Predictive biomarkers provide information on the likelihood 
of response to therapy and, in the clinic, can be used to 
support the selection of suitable personalised therapies (154).  
For example, over 64% of lung adenocarcinomas have 
an underlying driver mutation (157) and around 30% of 
these mutations are linked to an approved targeted therapy 
with the most common genetic alterations being EGFR 
mutations and translocations of ALK or ROS1 (158). 
Another potential for CTCs in personalised therapy is the 
longitudinal monitoring of therapy linked mutations as 
exemplified in a NSCLC study where an examination of 12 
patients with NSCLC with EGFR mutated tumour revealed 
the same detectable EGFR mutations in CTCs in 11 
patients (159). Similarly, a study by Marchetti et al. detected 
EGFR mutation in CTCs of 84% (31 out of 37 patients) 
EGFR mutant primary tumour (160). Several similar 
studies were able to reproduce similar results in detecting 
mutations in CTCs that matched the primary tumour and 
in cases where the mutations were not detected was likely 
due to the tumour heterogeneity between primary tumour 
and the metastatic tumours.

A number of studies have examined the feasibility of 
identifying rearrangements or translocations of ALK 
and ROS1 genes in CTCs as a means of guiding therapy 
(161,162). In one study fluorescence in-situ hybridisation 
(FISH) has been used to generate the filter-adapted FISH 
(FA-FISH) technique which was able to identify unique 
ALK rearrangement patterns in mesenchymal CTCs (105). 
It was suggested that the mesenchymal CTCs detected by 
FA-FISH could represent a highly invasive subpopulation 
with the potential to generate metastatic lesions (105). A 
similar FA-FISH approach was also used to detect both 
ROS1 translocations and CNA in NSCLC CTCs which 

correlated with poor response to crizotinib treatment (163).
In contrast to NSCLC, molecular analysis of SCLC 

has shown that the overall genomic landscape is chaotic 
with many mutations and widespread CNA but, despite 
the near ubiquitous inactivation of RB1 and TP53 frequent 
“actionable druggable” mutations have not been found 
(164,165). However, in a recent SCLC study a biomarker 
was developed based on CNA patterns detectable in single 
and pooled CTCs from 31 pre-treatment patients and 
was able to classify patients as either chemosensitive or 
chemorefractory to standard cisplatin etoposide with an 
accuracy of 83.3% (44). Interestingly, in the same study 
five patients who responded to treatment and relapsed with 
chemorefractory disease showed unaltered CTC CNA 
patterns at relapse indicating that mechanism of acquired 
chemoresistance differs from de novo chemoresistance (44).

Treatment response and mechanisms of resistance

Besides use of CTCs as prognostic or predictive markers, 
they have also been used as a pharmacodynamic marker 
where a change in the numbers of CTCs or a particular 
subset of CTCs following therapy indicates response to 
therapy. For example, in SCLC the total numbers of CTCs 
were significantly decreased following a single dose of 
chemotherapy (166,167). Similar results were observed in 
patients with NSCLC (5,168-170). In contrast, an increase 
in CTC numbers is indicative of failure to respond to 
therapy. Changes in CTC numbers were also examined 
in patients with localised NSCLC undergoing radiation 
treatment the change in CTC numbers post treatment 
was evaluated as a surrogate for disease response (171). 
Additional studies have investigated subsets of CTCs linked 
to the therapy used. For example, CTCs expressing insulin-
like growth factor-1 receptor (IGF-1R) were enumerated 
in patients with prostate cancer treated with a monoclonal 
human antibody, CP-751,871, targeting IGF-IR (172) and 
HER2 expressing CTCs were examined in patients with 
breast cancer treated in the neoadjuvant GeparQuattro  
trial (173).

Two clinical studies evaluated targeting the Notch ligand, 
delta-like ligand 3 (DLL3), and the T-cell checkpoint 
receptors programmed cell-death protein 1 (PD-1) and 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) for 
SCLC. Rovalpituzumab tesirine, DLL3 targeting agent has 
shown encouraging results in phase I clinical trials and is 
now moving on to phase II studies. Several other agents are 
in clinical trials for treatment of lung cancer such as new 
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generation EGFR and ALK inhibitors (174-176).
In the recent past, immune checkpoint inhibitors have 

emerged as promising therapeutic targets in both NSCLC 
and SCLC yielding unprecedented improvements in OS 
and quality of life. More recently, expression of PDL-1 in 
CTCs has been examined in trials with immune checkpoint 
inhibitors and has linked with patients who experienced 
progressive disease (177).

New drug target identification via CTC analysis

Since CTCs have been shown to be tumourigenic and 
can be obtained from a simple blood sample taken at pre-
treatment, on-treatment or post-treatment CTCs also 
represent an attractive source for drug target identification. 
Although as yet there has been no systematic use of CTCs 
for de novo drug target identification the recent advances 
in single cell profiling methodologies which now enable 
genetic and epigenetic analysis of CTCs (178) now provide 
this opportunity. For example, putative drug targets could 
be identified by examining genes encompassed in the CNA 
patterns seen in single and pooled CTCs which are linked 
to treatment response (44).

Conclusions

The study of CTCs represents an important field of 
research in cancer biology and also holds great promise as 
diagnostic, prognostic and predictive biomarkers. Currently 
the use of a blood samples as a “liquid biopsy” in oncology 
has been dominated by the striking advances in examining 
the cell-free component of blood and particularly circulating 
tumour DNA (ctDNA) (179,180). However, there are 
several features of CTCs that are not shared by ctDNA that 
justify continued CTC research including the generation 
of CDX and CTC culture models that can provide a direct 
means of testing new drugs/drug combinations (181). In 
addition, RNA analysis of CTCs can provide insights into 
their biological status and serial CTC RNA profiling can 
be used to identify underlying mechanisms of resistance. 
Furthermore, DNA analysis of individual CTCs provides 
an unambiguous means of understanding the mutational 
burden of the tumour as well as providing additional means 
for establishing the degree of tumour heterogeneity. Since a 
single blood sample encompasses both cell-free and cellular 
components, CTC and ctDNA can be readily combined to 
provide an enhanced understanding of the patient’s disease 
status (26,180,182).

In the field of oncology CTCs remain a key focus 
of biological and clinical research. With the recent 
improvements in CTC enrichment researchers are now 
able to explore key ongoing biological questions in CTC 
research such as: how many CTCs are required for a 
representative snapshot of the donor; can CTCs can be 
detected reliably in early disease and can CTCs be used to 
routinely guide cancer patient care.
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