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Introduction

The widespread use of  advanced chest  computed 
tomography (CT) to screen for lung cancer has dramatically 
increased detection of ground-glass nodules (GGNs) (1).  
Driver gene mutations are believed to initialize the 
tumorigenesis (2). However, how the GGNs occur and 

develop in the pre-stages of lung cancer is still elusive. 
In our recent study (3), we profiled the gene mutations 
of GGNs and found that many GGNs did not harbor 
the driver mutations that commonly occurred in lung 
adenocarcinomas (AD). We speculated that both the genetic 
background and/or the local microenvironment could play 
an important role in the initiation of GGNs.
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The human microbiome confers benefits or disease 
susceptibility to the human body. Disruption of the 
symbiotic balance of the human microbiome was commonly 
found in systematic diseases such as chronic gastric diseases, 
diabetes, and obesity (4-6). Previous studies have suggested 
that dysbiosis of the microbiota may also play vital roles 
in carcinogenesis at multiple levels by affecting metabolic, 
inflammatory, or immune pathways. These included 
colorectal, gastric, hepatocellular, and pancreatic cancers 
(7,8). Although the impact of the gut microbiome on 
digestive system-related cancers has been widely explored, 
few studies have investigated the interplay between the 
microbiome and lung cancer. Since the first culture-
independent report of the healthy lung microbiome, many 
published studies using molecular techniques for bacterial 
identification have found evidence of bacteria in the lower 
airways. Some recent studies have shown that certain 
microbes and microbiota dysbiosis are correlated with the 
development of lung cancer (9).

A better knowledge of the interplay between the 
lung microbiome and lung cancer will promote the 
development of innovative strategies for early prevention 
and personalized treatment in lung cancer, for example, 
detecting the core microbiota of GGNs and integrating 
with tumor genomics information. We applied shotgun 
whole genomic sequencing to all genomic content in a 
GGN lesion for both tumor genomic variation analysis 
and microbiota species identification. With high sequence 
coverage, shotgun metagenomics sequencing can detect rare 
and low-abundance members of the microbial community 
in tumor tissue samples.

Methods

Patients and tissue samples

Frozen tissues for whole-genome sequencing were 
obtained from patients who underwent surgical resection 
at the Shanghai Pulmonary Hospital between 2014 and 
2015. Pathological diagnosis and staging were performed 
according to the Internat ional  Mult idisc ipl inary 
Classification of Lung Adenocarcinoma and the TNM 
staging system of the IASLC, version 8 (10). Two 
pathologists reviewed all samples to confirm the histology 
and assess the tumor content. We selected only synchronous 
multiple GGNs (SM-GGNs) patients with two GGN 
lesions, which were defined when all tumors exhibited 
GGN dominance with a consolidation/tumor ratio <0.5 

based on thin-section CT findings, with one diagnosed as 
adenomatous hyperplasia (AAH) and another diagnosed 
as either adenocarcinoma in situ (AIS), minimally invasive 
carcinoma (MIA), or invasive AD. The institutional Ethics 
Committee of the Shanghai Pulmonary Hospital approved 
the study. Tumor and normal lung tissue were immediately 
placed in ice container after resection in a sterile 
environment. After enough slides were taken from the 
specimen for and postoperative pathological examination, 
the remaining specimen was put in −70 ℃ or liquid nitrogen 
tank for long term storage.

Whole-genome sequencing

DNA extraction from frozen specimen was conducted 
within 1 hour in the hospital laboratory using a QIAamp 
DNA Mini Kit (QIAGEN, Shanghai, China). The DNA 
samples were quantified with the NanoDrop system 
(Thermo Scientific, Shanghai, China) and then shipped 
in dry ice container to Novogene, Inc. (Beijing, China) 
for library preparation and sequencing. A paired-end 
DNA library was generated using a TruSeq Nano DNA 
HT Sample Preparation Kit (Illumina USA) following 
the manufacturer’s recommendations, and index codes 
were added to attribute sequences to each sample. Briefly, 
sonication of 1.0 μg tumor DNA samples was performed 
using a Covaris S220 sonicator (Massachusetts, USA) 
to generate fragments with an average size of 350 bp. 
Subsequently, the DNA fragments were end-polished and 
ligated with the full-length adapter for Illumina sequencing, 
followed by further Polymerase Chain Reaction (PCR) 
amplification. After the DNA was purified using SPRI 
beads from Agencourt, the libraries were analyzed for size 
distribution by an Agilent 2100 Bioanalyzer and quantified 
by real-time PCR. The DNA libraries were sequenced on 
an Illumina HiSeq X platform, generating 150 bp paired-
end reads. All sequence reads were assessed for quality, 
including removal of the adaptors, the reads that had more 
than 10% of “N”, and the read pair that had quality of less 
than 5 in more than 50% of bases.

Sequencing mapping

The first stage of mapping was performed by aligning 
sequence reads to the human reference genome hg19 using 
the BWA program (11). The unmapped sequence reads were 
extracted from the BWA bam files. For taxonomy profiling, 
the NCBI blast/db/ref_prok_rep_genomes was downloaded 
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(10,050 completed bacterial genomes on April 27, 2018). 
BWA was used to map the unmapped reads (fastq files) 
on this reference genome database. For gene functional 
profiling, these unmapped reads were then converted from 
fastq to fasta sequences files. The fasta DNA sort sequence 
reads were searched against the Bacterial RefSeq protein 
(blast/db/nr) database downloaded from NCBI using blastx 
algorithm by Diamond program (12).

Microbiota profiling

Megan version 6 (13) was used for microbiota and 
microbiome profiling analysis. The SAM files from 
prokaryotic genome mapping were input into Megan 6 for 
taxonomic profiling. The Megan program loaded in the 
complete NCBI taxonomy, currently containing >280,000 
taxa. The DAA files generated from Blastx of the Diamond 
program were input into Megan 6 for microbiome function 
analysis. The lowest common ancestor (LCA) algorithm 
assigned every read to a taxon. If a read has significant 
matches to two different taxa at different taxa levels, the 
match to the ancestor is discarded and only the more 
specific match is used. The gene functional annotation 
databases, evolutionary genealogy of genes: Non-supervised 
Orthologous Groups (ggNOG) and SEED were provided 
with the Megan 6 software (14,15).

Microbiota diversity analysis

We ran QIIME2 program (16) on Microsoft Azure cloud 
server for microbiota diversity analysis. The microbiota 
profile matrix table, eggNOG and SEED function 
annotation matrix tables were exported from Megan 6 
analysis. These feature tables were then converted to BIOM 
format using Bioconductor package Biomformat (17). We 
then used the QIIME2 program to generate QZA files from 
the biom files and perform the following command lines 
for microbiota and microbiome diversity analyses: qiime 
diversity core-metrics, qiime diversity, α-group-significance, 
qiime diversity β-group-significance, qiime composition 
add-pseudocount qiime composition ancom.

Diversity analysis statistics

We applied α and β diversity statistics implemented in 
QIIME2 package to compare community at both the 
microbiota and microbiome levels. For α diversity, we 
counted the number of distinguishable taxa (OUT’s) in each 

sample as species richness. For β diversity we used following 
statistics as described in Supplemental methods: Jaccard 
similarity index, Bray Curtis dissimilarity, UniFrac distance, 
Principal Coordinates Analysis (PCoA), Evenness index, 
Krustal-Wallis, and ANOVA analyses.

Results

Patients and sequencing statistics

Fifteen tissue samples were resected from 5 patients, each 
having two GGNs and one normal control. All tumor 
specimens were reviewed by pathologists independently 
to determine their histological subtype according to 
the International Association for the Study of Lung 
Cancer (IASLC), the American Thoracic Society (ATS), 
and the European Respiratory Society (ERS) lung AD  
classification (18). Detailed clinical features are summarized 
in Table 1. All five patients were females and non-smokers. 
For patients p1, p2, and p3, the two GGNs were resected 
from different ipsilateral lobes (the upper or lower lobes). 
For patients, p4 and p5, the two GGNs were collected from 
the same lobes.

We performed whole genome sequencing (WGS) on 
these 15 samples. In total, we obtained 3,139×10−9 bases 
of data or 21×10−9 150bp paired-end reads, which were 
mapped on a reference genome. Each tumor sample had 
an average of 10 million reads that were not mapped to the 
human reference genome, 53% of which were mapped on 
prokaryotic reference genomes, with the exception of the 
AAH2 and AIS2 samples that had 5~7% of reads mapped 
on prokaryotic reference genomes (Table 2).

Microbiota in GGNs

We mapped the fi ltered sequence reads on NCBI 
prokaryotic genomes RefSeq and performed the taxonomic 
profiling using the Megan program (13). We defined the 
core member of GGN microbiota to be one that is observed 
in 100 % of samples, regardless of the relative abundance. 
The core GGN microbiota was shown at the phylum, class, 
order, family, genus, and species taxonomic ranks (Figure 1). 
The phylum level included Firmicutes and Actinobacteria. 
At the genus level, the core lung tissue microbiota included 
Mycobacterium, Corynebacterium, and Negativicoccus. In 
order to examine the cause for low mapped reads in samples 
AAH2 and AIS2, we compared the microbiota and the total 
mapped reads in each sample. Interestingly, a strong negative 
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Table 1 Sample clinical information

Sample Patient Smoking history Age Gender Tumor size, cm Tumor location Sample type Race

AAH1 p1 None 68 Female 0.5 Right upper Frozen Chinese

AAH2 p2 None 49 Female 0.5 Right upper Frozen Chinese

AAH3 p3 None 59 Female 0.5 Left upper Frozen Chinese

AAH4 p4 None 56 Female 0.6 Right upper Frozen Chinese

AAH5 p5 None 59 Female 0.6 Left upper Frozen Chinese

AD4 p4 None 56 Female 1.3 Right upper Frozen Chinese

AD5 p5 None 59 Female 1.6 Left upper Frozen Chinese

AIS1 p1 None 68 Female 0.8 Right lower Frozen Chinese

AIS2 p2 None 49 Female 0.8 Right lower Frozen Chinese

MIA3 p3 None 59 Female 0.9 Left lower Frozen Chinese

NOR1 p1 None 68 Female – Right upper Frozen Chinese

NOR2 p2 None 49 Female – Right upper Frozen Chinese

NOR3 p3 None 59 Female – Left upper Frozen Chinese

NOR4 p4 None 56 Female – Right upper Frozen Chinese

NOR5 p5 None 59 Female – Left upper Frozen Chinese

AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; AD, invasive 
adenocarcinoma; NOR, normal tissue.

Table 2 Sample sequence reads and species richness

Sample Patient Mapped Unmaped u% proMap p% Species richness

AAH1 p1 2323590587 25579004 0.011 12923152 0.51 4

AAH2 p2 2155061193 5548767 0.003 302830 0.05 7

AAH3 p3 2034745855 7859414 0.004 3582613 0.46 4

AAH4 p4 2133065398 14311224 0.007 10650276 0.74 3

AAH5 p5 2032136839 6903622 0.003 2483820 0.36 5

AD4 p4 1477806671 13091936 0.009 10532117 0.80 4

AD5 p5 1206984463 13353306 0.011 6775092 0.51 4

AIS1 p1 1216580717 13043716 0.011 4799308 0.37 3

AIS2 p2 1372138265 3781174 0.003 254813 0.07 7

MIA3 p3 1198991770 13533711 0.011 8322659 0.61 4

NOR1 p1 743220621 6568186 0.009 4521638 0.69 3

NOR2 p2 796498177 6070196 0.008 4048212 0.67 3

NOR3 p3 749172176 7991850 0.011 6142635 0.77 3

NOR4 p4 741620953 6105365 0.008 4254377 0.70 3

NOR5 p5 746450734 6093107 0.008 4498074 0.74 4

In each GGN or adjacent normal sample, the number and percentage of sequence reads mapped on microbiota genomes. u%: unmapped 
reads%; proMap: reads mapped on prokaryotic genome refSeq; p%: % of reads mapped on prokaryotic genome refSeq; Species 
richness: the number of taxa (OTUs) counted in each sample. GGN, ground-glass nodule.



239Translational Lung Cancer Research, Vol 8, No 3 June 2019

© Translational lung cancer research. All rights reserved.   Transl Lung Cancer Res 2019;8(3):235-246 | http://dx.doi.org/10.21037/tlcr.2019.06.11

Fi
gu

re
 1

 P
hy

lo
ge

ne
tic

 t
re

e 
of

 m
ic

ro
bi

ot
a 

ta
xa

 in
 G

G
N

s.
 T

he
 s

eq
ue

nc
e 

re
ad

s 
w

er
e 

m
ap

pe
d 

on
 N

C
B

I 
pr

ok
ar

yo
tic

 g
en

om
es

 a
nd

 a
ss

ig
ne

d 
to

 d
iff

er
en

t 
le

ve
ls

 o
f t

ax
a 

by
 N

C
B

I 
ta

xo
no

m
y 

lib
ra

ry
 u

si
ng

 M
eg

an
 6

. T
he

 d
iff

er
en

t 
le

ve
ls

 o
f 

ta
xa

 w
er

e 
di

sp
la

ye
d 

by
 M

eg
an

 6
: P

hy
lu

m
, C

la
ss

, O
rd

er
, F

am
ily

, G
en

us
, a

nd
 S

pe
ci

es
. E

ac
h 

bo
x 

co
nt

ai
ns

 1
5 

sa
m

pl
e 

ba
rs

 o
rd

er
ed

 a
s 

A
A

H
1,

 A
A

H
2,

 A
A

H
3,

 A
A

H
4,

 A
A

H
5,

 A
IS

1,
 A

IS
2,

 M
IA

3,
 A

D
4,

 A
D

5,
 N

O
R

1,
 N

O
R

2,
 N

O
R

3,
 N

O
R

4,
 N

O
R

5.
 T

he
 b

ar
 h

ei
gh

ts
 r

ep
re

se
nt

 th
e 

no
rm

al
iz

ed
 r

ea
d 

nu
m

be
rs

. G
G

N
, g

ro
un

d-
gl

as
s 

no
du

le
.

B
ac

te
ria

C
el

lu
la

r 
or

ga
ni

sm
s

A
ct

in
ob

ac
te

ria
 <

ph
yl

um
>

A
ct

in
ob

ac
te

ria

P
ro

te
ob

ac
te

ria

G
am

m
ap

ro
te

ob
ac

te
ria

E
nt

er
ob

ac
te

ra
le

s

P
se

ud
om

on
ad

al
es

C
or

yn
eb

ac
te

ria
le

s

O
sc

ill
at

or
io

ph
yc

id
ea

e
O

sc
ill

at
or

ia
le

s

N
eg

at
iv

ic
ut

es
N

eg
at

iv
ic

oc
cu

s
N

eg
at

iv
ic

oc
cu

s 
m

as
si

lie
ns

is
Ve

ill
on

el
la

le
s

Ve
ill

on
el

la
ce

ae

A
na

er
om

as
si

lib
ac

ill
us

A
na

er
om

as
si

lib
ac

ill
us

 s
en

eg
al

en
si

P
la

nk
to

th
rix

P
la

nk
to

th
rix

 te
pi

da

C
ut

ib
ac

te
riu

m
 a

cn
es

C
ut

ib
ac

te
riu

m
 a

cn
es

 K
PA

17
12

02

C
ut

ib
ac

te
riu

m

M
yc

op
la

sm
at

al
es

M
yc

op
la

sm
a

M
yc

ob
ac

te
ria

ce
ae

M
yc

ob
ac

te
riu

m
M

yc
ob

ac
te

riu
m

 fo
rt

ui
tu

m
 c

om
pl

ex

M
yc

ob
ac

te
riu

m
 h

ou
st

on
en

se

M
yc

op
la

sm
at

ac
ea

e
M

ol
lic

ut
es

Te
ne

ric
ut

es

C
lo

st
rid

ia
C

lo
st

rid
ia

le
s

P
ro

pi
on

ib
ac

te
ria

le
s

P
ro

pi
on

ib
ac

te
ria

ce
ae

Te
rr

ab
ac

te
ria

 g
ro

up

Fi
rm

ic
ut

es

C
ya

no
ba

ct
er

ia
/m

el
ai

na
ba

ct
er

ia
 g

ro
up

C
ya

no
ba

ct
er

ia

E
nt

er
ob

ac
te

ria
ce

ae

C
or

yn
eb

ac
te

ria
ce

ae
C

or
yn

eb
ac

te
riu

m
 p

ro
ve

nc
en

se

C
or

yn
eb

ac
te

riu
m

A
lp

ha
pr

ot
eo

ba
ct

er
ia

S
ph

in
go

m
on

ad
al

es
S

ph
in

go
m

on
ad

ac
ea

e

B
re

vu
nd

im
on

as

B
re

vu
nd

im
on

as
 v

es
ic

ul
ar

is

B
ra

dy
rh

iz
ob

ia
ce

ae

S
ph

in
go

m
on

as

E
sc

he
ric

hi
a 

co
li 

O
10

4:
H

4 
st

r. 
20

10
0

A
ci

ne
to

ba
ct

er
 p

itt
ii 

P
H

E
A

-2

C
au

lo
ba

ct
er

ac
ea

e
C

au
lo

ba
ct

er
al

es

R
hi

zo
bi

al
es

E
sc

he
ric

hi
a

E
sc

he
ric

hi
a 

co
li

E
sc

he
ric

hi
a 

co
li 

O
10

4:
H

4

M
or

ax
el

la
ce

ae
A

ci
ne

to
ba

ct
er

A
ci

ne
to

ba
ct

er
 p

itt
ii

A
ci

ne
to

ba
ct

er
 c

al
co

ac
et

ic
us

/b
au

m
an

ni
i c

om
pl

ex



240 Ren et al. Microbiome in lung GGN

© Translational lung cancer research. All rights reserved.   Transl Lung Cancer Res 2019;8(3):235-246 | http://dx.doi.org/10.21037/tlcr.2019.06.11

Figure 2 Principal co-ordinate analysis (PCoA) of β diversity of microbiota composition. The phylogenetic distances between samples were 
calculated by unweighted UniFrac algorithm and displayed by PCoA in QIIME2 package. (A) PCoA of patients. Colored dots represent  
5 patient populations. Patients were not obviously classified into groups by any of the three axis; (B) PCoA of in GGNs and normal samples. 
Colored dots represent 5 GGN types or normal sample populations. The two and 5 normal samples were grouped and separately by the 
main Axis 1. GGN, ground-glass nodule.

Axis 2 (18.41 %)

Axis 3 (11.03 %) Axis 3 (11.03 %)

Axis 1 (63.25 %)
Axis 1 (63.25 %)

Axis 2 (18.41 %)
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AAH
AD
AIS
MIA
NOR

A B

correlation (Pearson r=−0.84) was found between mapping 
percentage and the number of species taxa (Figure S1).  
Further study will be performed to verify if antagonism of 
multiple bacteria exists in GGNs.

We next examined the microbiota community diversity 
in each GGN sample. The top 10 bacteria taxonomies were 
showed. Negativicoccus demonstrated the most richness 
amongst all samples, followed by Mycobacterium and 
Corynebacterium (Figure S2). Based on the microbiota 
composition, we compared the β diversity among patients. 
However, the principal co-ordinate analysis (PCoA) showed 
no classification among patient samples (Figure 2). The 
permutation ANOVA test did not show significance of the 
microbiota community among patients’ samples (Table S1).

Microbiome gene functions in GGNs

Using the filtered sequence reads to map the NCBI RefSeq 
non-redundant protein sequences, we first predicted 
gene functions based on the eggNOG (14) database for 
the most abundant modules. eggNOG is a database of 
orthologous groups of genes. In the eggNOG annotation, 
the top abundant modules included Amino Acid Transport 
and Metabolism, Transcription, Replication, Energy 
Production and et cetera (Figure S3). The composition of 
eggNOG modules in each sample is shown in Figure 3. 
PCoA showed a slight separation of patients 1 and 2 from 

patients 3, 4, and 5 (Figure S4). The composition evenness 
showed a significant difference among all patient groups 
(Kruskal-Wallis test, P=0.039). The pairwise of p1 or p2 
versus p3 or p4, and p3 versus p5 are significant (P<0.05) 
(Figure 4, Table S2).

We used the SEED database to annotate the mapped 
sequence reads.  SEED is  made up of  subsystems 
representing the collection of functional roles (for example, 
a metabolic pathway), or a complex (15). The group of 
Amino Acids and Derivatives and group of Cofactors, 
Vitamins, Prosthetic Groups, and Pigments are the top 
subsystems. However, the 15 samples were not clustered 
into patients or GGNs by the SEED subsystem composition 
z-scores (Figure 5A). Neither PCoA or bray curtis distance 
test show significance among patients (Figure S5).

Microbiota between GGN nodules and adjacent normal 
tissues

We included data from 10 tumor samples for comparison 
with adjacent normal t issues.  The normal t issues 
were resected from the same patient lung lobe as the 
corresponding GGN. We first tested the significance of 
Jaccard distance between GGNs and normal sample by 
permutation. Only the AD showed significant difference to 
NOR samples (P=0.047) (Table S3). This difference can also 
be seen from the PCoA view (Figure 2).
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Figure 3 Composition of eggNOG modules in each GGN and normal tissue sample. The sequence reads were assigned to the eggNOG 
(orthologous groups and functional annotation) and displayed by heatmap in Megan 6. The sequence reads were normalized to 100% scale. 
A few eggNOGs had a similar proportion among all samples, such as [E], [G] (COG one letter Code description), etc. However, [K], [Z] had 
different proportion among different samples. GGN, ground-glass nodule.
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[H] Coenzyme transport and metabolism
[Q] Secondary metabolites biosynthesis, transport and catabolism
[F] Nucleotide transport and metabolism
[V] Defense mechanisms
[D] Cell cycle control, cell division, chromosome partitioning
[A] RNA processing and modification
[N] Cell motility
[B] Chromatin structure and dynamics
[W] Extracellular structures
[Y] Nuclear structure

Figure 4 Kruskal-Wallis test for the composition evenness using QIIME2. The Pielou’s evenness indexes (described in Methods) of 5 
patients were calculated and tested for significance between samples by Krustal-Wallis test. Patient groups with 3 samples each were pairwise 
tested. The Y-axis is the Pielou’s index. Patient 1 (p1) or p2 versus p3 or p4, and p3 versus p5 are significant (*P<0.05).
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Figure 5 Gene function annotation. The sequence reads were assigned to the SEED subsystems by Megan 6. (A) Clustering of SEED 
subsystems in all GGN and normal tissue samples. The sequence reads were normalized by z-scores of GGN samples. Four samples 
clusters and 4 subsystem clusters were shown by the z-score profiles. However, the sample clusters show neither classifications of GGN 
types nor different patients. (B) Comparing the gene function annotation between GGNs and normal samples by t-test. Significances were 
found between the Secondary Metabolism of SEED annotation in GGNs (SM GGN) and in normal sample (SM NOR) and between the 
COG0515 Serine Threonine protein kinase annotated of eggNOG in GGN (STK GGN) and in normal control tissues (STK NOR). 
GGN, ground-glass nodule.
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Gene functions between GGN nodules and adjacent 
normal tissues

We examined the eggNOG annotation between GGNs 
and normal samples. The Jaccard distance permutation 
test did not show significance between all GGN types 
and normal samples except an intermediate significance 
(P=0.096) between AIS and normal samples (Table S4). 
In PCoA analysis, four normal samples were separated 
from other GGNs (Figure S6); however, the test was not 
significant since the other normal sample from patient p5 
was dispersed far away.

We examined the SEED annotation. There was 
no significantly difference between normal lung 
tissue samples and various GGN samples by Jaccard 
distance permutation test and PCoA. However, when 
we examined the individual SEED subsystems, the 
Secondary Metabolism pathway was significantly 
different between GGNs and normal samples (Figure 5B,  
fold change 1.32 with P value 0.001). In the eggNOG 
annotation, the COG0515 Serine Threonine protein kinase 
in GGNs was significantly higher than in normal control 
tissues (Figure 5B, fold change 4.23, P=0.01).

Discussion

Several studies of the microbiota of healthy and chronic 
obstructive pulmonary disease (COPD)-affected lungs 
from bronchoalveolar lavage (BAL) or sputum have been 
described using molecular methods (19-25). The COPD 
bronchial and lung tissue microbiota are very similar and 
consisted of Streptococcus, Corynebacterium, Alloiococcus, 
Prevotella, Veillonella, and Rothia (26). In this study, 
we sequenced the whole genome from the GGN nodule 
tissues. We did not find the common lung microbiota 
Streptococcus; however, we found Mycobacterium, 
Corynebacterium, and Negativicoccus as core microbiota 
existing in all GGNs and normal lung control tissues.

Infections with certain viruses, bacteria, and parasites have 
been identified as strong risk factors for specific cancers; and 
16.1% of cancers are attributable to infections, although 
the contribution due to infection varies widely from region 
to region (27). Specific to China, tuberculosis (TB) is still 
an important health threat, accounting for 11% of the 
TB burden in the world (28). There is now epidemiologic 
evidence that pre-existing TB poses an increased lung 
cancer risk (29-31). Interestingly, Mycobacterium was 
discovered in GGNs. Mycobacterium tuberculosis and 

Mycobacterium avium complex (MAC) are considered to 
play a potential role in oncogenesis (32). Unexpectedly 
high rates of lung cancer among individuals were reported 
with prior or concurrent MAC lung infection (32).  
Coexistence of M. xenopi with lung cancer has been 
reported. In a recent population-based study of patients 
with pulmonary nontuberculous mycobacterial disease, 
6.5% of the patients also had lung cancer (33). The 
persistence of mycobacterial organisms in the lung can 
stimulate a proinflammatory response to local tissue (34,35). 
Local inflammation triggers the release of factors that can 
support the outgrowth of premalignant cells (36).

In the gene function eggNOG annotation,  the 
COG0515 Serine Threonine protein kinase in GGNs was 
significantly higher than in normal control tissues (fold 
change 4.23, P<0.001). Recent advances in genetic strategies 
and genome sequencing have revealed the existence of 
“eukaryotelike” serine/threonine protein kinases (STPKs) in 
a number of prokaryotic organisms, including Streptococcus 
spp, Mycobacterium, Yersinia spp, Listeria monocytogenes, 
Pseudomonas, Enterococcus faecalis, and Staphylococcus 
aureus (37-43). Bacterial serine/threonine protein kinase 
(STPK) family phosphorylates a host substrate or the 
host defense is disrupted by STPK activity. In the SEED 
annotation, the bacterial Secondary Metabolism in GGNs 
is significantly higher than in normal control tissues (fold 
change 1.32, P=0.01). Microbial Secondary Metabolism 
pathway produces secondary metabolites, such as pigments, 
alkaloids, toxins, antibiotics, gibberellins, carotenoids that 
serve no obvious function in the life of organisms that 
produce them. These secondary metabolites could form a 
microenvironment that affects the local host responses or 
initiate tumorigenesis.

Despite the limitations of small sample size, we described 
the taxonomic and functional profiles of microbiota in lung 
AD presented as GGN. A concern is that our lung tissue 
assays might be contaminated during DNA extraction, 
PCR amplification, or sequencing. As recently reviewed by 
Eisenhofer et al. (44), the contamination could be an issue 
in metagenomics analysis for low-biomass specimen such 
as lung specimen. Similar to many previous microbiome 
studies, we did not design proper positive and negative 
controls to estimate the contamination. However, the 
procedure we used to handle the samples would have 
greatly reduced the chance of cross-contamination or 
environment contamination. Mycobacterium, one of the top 
taxa previously not seen in the reported contaminated taxa  
list (44), unlikely came from environment contamination. As 
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a first report in GGN microbiome using a WGS approach, 
this study can gain further verification using 16S rRNA 
metagenomics on a large sample size and can be a valuable 
reference for future studies.

We speculate that cumulative exposure to air pollutants or 
life style conditions altered the lung microbiota which may 
contribute to the initiation of GGNs, though it was not tested 
in this study yet. Air pollutants are the atmospheric particulate 
matters (PM) that are 2.5 to 10 micrometers in diameter 
(PM10) and are in 2.5 micrometers or less (PM2.5). In 2005, 
the number of lung cancer deaths attributable to PM2.5 
in China was 51,200, accounting for 13.7% of the overall 
death due to lung cancer (45). The change of atmospheric 
composition has an influence on the microbiota diversity, even 
disordered the microbial communities according to previous 
studies (46-48). Our results advocate for further studies on 
the relationship of air pollution and the lung microbiome, as 
well as the contribution of heavy air pollution to the increased 
GGN and lung cancer incidence in China.

Collectively, this study first investigated the microbiome 
in GGNs using WGS and found core microbiota 
(Mycobacterium, Corynebacterium, and Negativicoccus) in 
GGNs. The Secondary Metabolism pathway and Serine 
Threonine protein kinase were increased in GGNs. Though 
the sample size was small and contamination controls were 
not designed, the sample resections performed in a sterile 
environment and the molecular experiment procedure 
largely reduced the chances of contamination. These 
discoveries may gain further verification in future studies 
using 16S rRNA metagenomics for a larger sample size. 
Our study shed a light that lung microbiome may contribute 
to the development of GGNs, particularly in regions with 
heavy air pollutions.
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Supplementary 

Figure S1 Correlation between species richness and abundance. The number of species taxa (species richness) was count in each sample. 
The percentage of reads mapped on prokaryote genomes for each sample (Table 1). Pearson correlation between the species richness and the 
percentage of mapped reads was performed. A strong negative (r=–0.84) correlation was found.
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Methods and statistics

We applied α and β diversity statistics implemented in 
QIIME2 package to compare community at both the 
microbiota and microbiome levels. For α diversity, we 
count the number of distinguishable taxa (OUT’s) in each 
sample as species richness. For β diversity we used following 
statistics:

(I)	 The Jaccard similarity index or the Jaccard 
similarity coefficient is a measure of similarity for the 
two sets of data, with a range from 0% to 100%. 
The higher the percentage, the more similar the 
two populations.
Jaccard Index = (the number in both sets)/(the 
number in either set) ×100

(II)	 The Bray Curtis dissimilarity is to quantify the 
differences between two sets. 
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Where: i & j are the two sites; Si is the total 
number of specimens counted on site I; Sj is the 
total number of specimens counted on site j; Cij is 
the sum of only the lesser counts for each species 
found in both sites.

(III)	 UniFrac  incorporates  informat ion on the 
relative relatedness of community members by 
incorporating phylogenetic distances between 
observed organisms in the computation. 

(IV)	 Principal Coordinates Analysis (PCoA) explores 
and visualizes similarities or dissimilarities of data. 
It uses a similarity matrix or dissimilarity matrix 
and assigns to find the main axes through a matrix. 
It is a kind of eigenanalysis and calculates a series of 
eigenvalues and eigenvectors.

(V)	 Evenness index is a measure of biodiversity of a 
community. The evenness of a community can be 
represented by Pielou’s evenness index:
J’ = H’/H’max. Where H’is the number derived 
from the Shannon diversity index and H’max is the 
maximum possible value of, equal to:
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J’ is constrained between 0 and 1. The less 
evenness in communities between the species (and 
the presence of a dominant species), the lower J’ is. 
And vice versa. S is the total number of species.

(VI)	 Evenness test by Krustal-Wallis and ANOVA 
analyses. In the ANOVA, we assume that the 
dependent variable is normally distributed and 
there is approximately equal variance on the 
scores across groups. The Kruskal-Wallis test is 
a nonparametric (distribution free) test, and is 
used when the assumptions of one-way ANOVA 
are not met. We do not have to make any of these 
assumptions when using the Kruskal-Wallis Test.
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Figure S2 Microbiota community diversity in all samples. The filtered sequence reads from whole genome sequencing data were mapped on 
NCBI prokaryote genomes. The sequence reads assigned on operational taxonomic units (OTUs) by assignment algorithm lowest common 
ancestor (LCA) using Megan 6 software package. The reads on taxa in 15 samples were displayed by Box plot. Top three taxa were identified.

100

90

80

70

60

50

40

30

20

10

0

N
um

be
r 

of
 re

ad
s 

(%
)

Grouped

Taxonomy profile for comparison. megan

Escherichia coli O104: H4 str. 2011C-3493

Acinetobacter pittii PHEA-2

Planktothrix tepida

Corynebacterium
 provencense

M
ycobacterium

 houstonense

Negativicoccus m
assiliensis

Bradyrhizobiaceae

Brevundim
onas vesicularis

M
ycoplasm

a

Cutibacterium
 acnes KPA171202

Sphingom
onas

Anaerom
assilibacillus senegalensis

Table S1 The permutation ANOVA test of the microbiota community among patients’ samples

Group 1 Group 2 Sample size Permutations Pseudo-F P value q value

p1 p2 6 999 1.98306 0.195 0.686667

p1 p3 6 999 0.304878 1 1

p1 p4 6 999 0 1 1

p1 p5 6 999 1.277006 0.395 0.686667

p2 p3 6 999 1.757704 0.412 0.686667

p2 p4 6 999 1.98306 0.391 0.686667

p2 p5 6 999 1.744858 0.185 0.686667

p3 p4 6 999 0.304878 1 1

p3 p5 6 999 0.845161 0.599 0.855714

p4 p5 6 999 1.277006 0.4 0.686667

The abundance (reads) of species taxa in each sample was calculated. The patients with three samples each were compared by 
permutation ANOVA for significant test. No significance was found between any patients in taxa abundance using permutation ANOVA.



Figure S3 The top abundant eggNOG function modules in all samples. The filtered sequence reads were mapped on eggNOG database. 
The reads were assigned to eggNOG annotations using Megan 6. The reads on each eggNOGs of15 samples were displayed by Box plot. 
The eggNOGs (COG one letter Code description) were ranked by read abundance assigned to.
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Figure S4 PCoA of composition of eggNOG annotation. The mapped sequence reads were assigned to eggNOG annotations. The Jaccard 
distances between patients were calculated using eggNOG composition in each patient and displayed by PCoA in QIIME2 package. Patients 
such as p5 were dispersed and were not classified into groups by any of the three axis.
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Table S2 The composition evenness test (Kruskal-Wallis test) among all patient groups

Group 1 Group 2 H P value q value

p1 (n=3) p2 (n=3) 2.333 0.127 0.181

p1 (n=3) p3 (n=3) 3.857 0.050 0.099

p1 (n=3) p4 (n=3) 3.857 0.050 0.099

p1 (n=3) p5 (n=3) 0.048 0.827 0.827

p2 (n=3) p3 (n=3) 3.857 0.050 0.099

p2 (n=3) p4 (n=3) 3.857 0.050 0.099

p2 (n=3) p5 (n=3) 0.429 0.513 0.641

p3 (n=3) p4 (n=3) 0.048 0.827 0.827

p3 (n=3) p5 (n=3) 3.857 0.050 0.099

p4 (n=3) p5 (n=3) 2.333 0.127 0.181

The abundance (reads) of species taxa in each sample was calculated. The patients with three samples each were compared (group1 
versus group 2) by Kruskal-Wallis test, a nonparametric (distribution free) test, for significant test. Significances were found between p1 
and p3, p1 and p4, p2 and p3, p2 and p4, p3 and p5. Kruskal-Wallis (all groups): H=10, P=0.038.
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Figure S5 PCoA of composition of SEED annotation. The mapped sequence reads were assigned to SEED subsystem annotations. The 
Jaccard distances between patients were calculated using SEED composition in each patient and displayed by PCoA in QIIME2 package. 
Patients were not classified into groups by any of the three axis.

Table S3 The Jaccard distance test (QIIME2) between GGNs and normal by permutation test using microbiota composition

Group 1 Group 2 Sample size Permutations Pseudo-F P value q value

AAH AD 7 999 0.7826155 0.685 0.685

AAH AIS 7 999 1.01111928 0.466 0.625

AAH MIA 6 999 0.74257041 0.5 0.625

AAH NOR 10 999 1.99864623 0.122 0.565

AD AIS 4 999 1.88535093 0.318 0.565

AD MIA 3 999 6.5 0.335 0.565

AD NOR 7 999 11.2244898 0.047 0.47

AIS MIA 3 999 0.59179688 0.667 0.685

AIS NOR 7 999 2.82318011 0.277 0.565

MIA NOR 6 999 4.8 0.339 0.565

The microbiota composition between AD and NOR (group 1 was compared to group 2) was significant by Jaccard distance test though q 
value is not significant. GGN, ground-glass nodule.



Table S4 The Jaccard distance permutation test between all GGN types and normal samples using eggNOG composition

Group 1 Group 2 Sample size Permutations Pseudo-F P value q value

AAH AD 7 999 1.032 0.334 0.497

AAH AIS 7 999 1.131 0.094 0.480

AAH MIA 6 999 1.094 0.327 0.497

AAH NOR 10 999 1.033 0.348 0.497

AD AIS 4 999 1.137 0.324 0.497

AD MIA 3 999 0.964 0.663 0.737

AD NOR 7 999 0.847 1.000 1.000

AIS MIA 3 999 1.200 0.329 0.497

AIS NOR 7 999 1.104 0.096 0.480

MIA NOR 6 999 0.995 0.478 0.597

The eggNOG composition between any type of GGNs and NOR (group 1 was compared to group 2) was not significant by Jaccard 
distance test. GGN, ground-glass nodule.

Figure S6 PCoA of eggNOG composition. The normal samples (purple) were separated from GGNs. The mapped sequence reads were 
assigned to eggNOG annotations. The Jaccard distances between GGN types were calculated using eggNOG composition in each GGN 
type or normal tissue group and displayed by PCoA in QIIME2 package. GGN types were not clustered into groups by any of the three axis 
but the normal samples (purple) were separated from GGNs. GGN, ground-glass nodule.
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