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Background: Our previous studies have identified a serum-based 4-microRNA (4-miRNA) signature that may 
help distinguish patients with lung cancer (LC) from non-cancer controls (NCs). Here, we used an extended 
independent cohort of 398 subjects to further validate the diagnostic ability of this 4-miRNA signature. 
Methods: Using quantitative reverse transcription polymerase chain reaction (qRT-PCR), expression of 
the 4-miRNAs was assessed in a total of 398 sera that included 213 LC patients and 185 NCs. A logistic 
regression model using training-test sets, receiver operating characteristic (ROC) curve analysis and t-test 
were used to test the impact of varying expression of these miRNAs on its diagnostic accuracy for LC. The 
cell proliferation and colony formation affected by these miRNAs, as well as gene ontology (GO) analysis of 
miRNA target genes were performed. 
Results: The levels of the 4-miRNAs were significantly higher in the serum of patients with LCs as 
compared to NCs. Using a logistic regression prediction model based on training and test sets analysis, we 
obtained the area under the curve (AUC) of 0.921 [95% confidence interval (CI), 0.876–0.966] on the test 
set with specificity 90.6%, sensitivity 77.9%, accuracy 84.1%, positive predictive value (PPV) 89.8% and 
negative predictive value (NPV) 79.5%. 
Conclusions: We have verified that this serum 4-miRNA signature could provide a promising noninvasive 
biomarker for the prediction of LC, particularly in patients with indeterminate lung nodules on screening 
CT scans.
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Introduction

Lung cancer (LC) is the leading cause of cancer death 
worldwide (1). Despite numerous advancements in LC 
therapies in recent years, the 5-year survival rate is only 
18% (1). As LC symptoms occur late in the course of the 
disease, most patients present in advanced stages of disease 
and these patients are far less likely to respond to currently 
available therapies. Early diagnosis is key to the management 
of LC patients with curative intent treatment yielding 5-year 
survival of 75% (2). There are several LC risk prediction 
models based on patient characteristics and/or CT scan 
data with the area under the curve (AUC) of ranging from 
0.57–0.86 (3-6). Low-dose screening CT (LDCT) scans 
detect more stage I LCs than chest radiography and can 
reduce LC relative risk for mortality of 20% (7). Although 
LDCT is more sensitive in detecting early-stage LCs, one 
of the major limitations is the occurrence of false-positive 
screen results (5). Several circulating molecular markers 
have been proposed, e.g., cell free DNA, gene methylation 
and multiple marker approaches (8-11). More recently, 
microRNAs (miRNAs) present in bodily fluids have been 
proposed as stable and reproducible biomarkers (12-16). We 
sought to develop novel noninvasive serum markers based 
upon the miRNA’s changes demonstrated in LC that could 
enhance the sensitivity and specificity of current diagnostic/
predictive tools. Positive signals by such biomarkers could 
increase the pre-test probability of cancer. 

MiRNAs are often highly dysregulated in human cancers, 
including LC, and may serve as oncogenes or tumor 
suppressor genes contributing to cancer initiation and 
progression (17). In addition to permitting sub-classification 
of LC (14,18), specific miRNA profiles also may predict 
prognosis and disease recurrence in early-stage LC (19-23). 
Several patterns of miRNAs were reported to be associated 
with lymphocytic leukemia, lung, breast, prostate and 
pancreas cancers by using microarray platforms or real-time 
quantitative reverse transcription polymerase chain reaction 
(qRT-PCR) (24). 

Our previous studies have identified a serum 4-miRNA 
signature which could distinguish LC patients from non-
cancer controls (NCs) with high accuracy (25). This 
study enrolled 154 LC patients and 45 NCs, of which 
92 were used for discovery by miRNA array, and 107 for 
independent validation by RT-PCR. This 4-miRNA (miR-
141, miR-193b, miR-200b, miR-301) signature exhibited 
an AUC of 0.985 in the discovery set and 0.993 in the 
validation set. Importantly, these 4-miRNAs were selected 
because they were highly expressed in LC tissue, increasing 

the likelihood that these were secreted from the tumor cells 
rather than blood cells (20). In order to verify this 4-miRNA 
signature, we expanded our evaluation of this 4-miRNA 
signature in a large independent cohort of 398 subjects 
including 213 LC patients and 185 NCs using qRT-PCR 
assay (Figure 1). The predictive signature for LC diagnosis 
was obtained using logistic regression models based on 
training-test analysis. 

Methods

Patient and control sera collection

A total of 398 patient sera used in this study were collected 
from the University of Michigan Health System (UM) and 
the Veterans Affairs Ann Arbor Health System (VA) from 
1991 to 2017. These samples included 213 LC patients and 
185 NCs. Written consent was provided by all enrolled 
patients, and this study was approved by the University of 
Michigan Institutional and the VA Health System Review 
Board and Ethics Committee. The detailed clinical features 
are shown in Table S1 and Figure S1. Among 213 cancers, 
there were 113 adenocarcinomas (ACs), 56 squamous cell 
carcinomas (SCCs), 10 small cell LCs (SCLCs), 17 large 
cell cancers (LCCs) and 17 metastatic cancers (from other 
primary cancers) (Metas) (Figure S1A). Regarding tumor 
stage, there were 112 cases diagnosed as stage I, 39 stage 
II, 31 stage III, and 7 stage IV. In 185 NCs, the 99 sera 
from UM included patients with benign lung disease [5],  
lupus [48], reflux esophagitis [19] and normal healthy 
volunteers [27]; 86 sera from the VA included patients 
(all smokers) with benign lung nodules [39] and non-
lung nodule controls [47] (Figure S1C,D). The subjects in 
controls have more young and male. Equally distributed 
with respect to smoking status (30–45 vs. >45) between LC 
and NC (Table S1).

Peripheral blood from each subject was processed for 
serum extraction within 1 hour after blood-draw. After 
centrifuging at 3,000 rpm for 10 min at room temperature, 
serum was transferred into microfuge tubes (300 µL in 
each tube) and frozen instantly in liquid nitrogen, and then 
placed at –80 ℃ for long-term storage. 

Preparation of serum total RNA and miRNA quantitative 
qRT-PCR

Total RNA from serum was purified using the miRNeasy 
Serum/Plasma Kit (Qiagen, Hilden, Germany) following 
the manufacturer’s protocol. The details of preparation 
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of total RNA was described previously (25). For each 
sample, cel-miRNA-39 was used as a spike-in control, and 
added into the mixture with Qiazol and serum at a final 
concentration at 0.1 pM (volume ratio of Qiazol to serum 
was 5:1). After purification and assessment of concentration, 
all total RNA was kept at –80 ℃ until use. 

Reverse transcription (RT) was conducted with  
100 ng total RNA using the miScript II RT Kit (Qiagen, 
Hilden, Germany). qPCR reactions were performed by 
the 7900HT system (Applied Biosystems, Thermo Fisher 
Scientific, Waltham, MA, USA) using miScript SYBR® 
Green PCR Kit (Qiagen, Hilden, Germany). All protocols 
were followed according to the manufacturer’s instructions. 
The qRT-PCR conditions were 1 cycle at 95 ℃ for 15 min 
followed by 40 cycles at 94 ℃ for 15 sec, 55 ℃ for 30 sec 
and 70 ℃ for 30 sec. Primers for miRNAs of interest (miR-
141, miR-193b, miR-200b and miR-301) were purchased 
from Invitrogen. We calculated the relative amounts of 
selected miRNAs using the equation 2-ΔΔCt. Cel-miRNA-39 
detected by qRT-PCR was used as an internal loading 
control. We have tested the repeatability of the PCR assay 
and a significantly correlation was observed (Figure S2). 

Statistical analysis

Data were analyzed using GraphPad Prism 6 (GraphPad 

Software Inc., CA, USA), Excel and R software. Receiver 
operating characteristic (ROC) curve and AUC analyses 
were used to show the tradeoff between sensitivity and 
specificity for the different possible cutoff-points for a 
diagnostic test. The different concentrations of miRNAs 
between subjects with cancer and controls were evaluated 
by unpaired Student’s t-test. A two-tailed P value <0.05 was 
considered significant. The gene ontology (GO) signaling 
analysis of miRNA target genes was performed using 
DAVID web at https://david.ncifcrf.gov.

Prediction model building with training set and test on 
test set

Log2 transformation of  the 4-miRNA (miR-141,  
miR-193b, miR-200b and miR-301) qRT-PCR expression 
data was completed using the log(x+1, 2) formula which 
included 398 subjects (213 LCs and 185 NCs). We 
randomly sampled 2/3 of the entire data set as the training 
set with 266 subjects, the remaining 1/3 was treated as the 
test set with 132 subjects. The proposed prediction model 
is a logistic regression model defined as logit(πi) = β0 + β1X1i 
+ β2X2i + β3X3i + β4X2i + εi where πi denotes the probability 
of having LC for the ith patient. X1i, X2i, X3i, X4i are the 
corresponding log2 transformed values of miRNA-141, 
miRNA-193b, miRNA-200b and miRNA-301 PCR batch 

Discovery set
70 tumors
22 controls
by miRNA array

Validation set
84 tumors
23 controls
by TaqMan qRT-PCR

Calibration/training set
145 tumors
121 controls
by SYBRgreen  qRT-PCR

Validation/test set
68 tumors
64 controls
by SYBRgreen qRT-PCR

This study

Logistic regression models 

Logistic regression models 

Discovery and validation of 4-miRNA signature

Previous 
study (25)

Figure 1 Flowchart of discovery/validation of 4-miRNA signature in previous and this study (25). Subjects and methods of miRNA 
detection, as well as major statistical analysis (logistic regression models) are indicated in each study. 4-miRNA, 4-microRNA; qRT-PCR, 
quantitative reverse transcription polymerase chain reaction.
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for the ith patient. εi is the error term for this model. 
We first fitted this logistic regression model on the 

training set only. With leave-one-out cross validation, we 
predicted the probability of having cancer for each subject 
based on the model fitted with all other subjects. Then 
the training set AUC was computed based on the training 
data only with ROC function in pROC R package. The 
corresponding training set ROC curve was also plotted 
based on the training set, and the cutoff probability for 
cancer prediction was selected with a training set specificity 
greater than 90%. Then we computed the predicted cancer 
indicator for each patient. If the predicted probability was 
greater than the cutoff value, the subject was predicted to 
have cancer; conversely if the predicted probability was 
lesser than the cutoff value, the subject was predicted to 
have a benign condition. Using the optimal cutoff value, 
we calculated the corresponding training set specificity and 
sensitivity. 

Furthermore, the predicted probability of having cancer 
for each subject in the test set was predicted by the logistic 
regression model fitted on the training set. The test set 
AUC and ROC curves were then calculated. The same 
cutoff probability for cancer prediction was used to calculate 
the corresponding specificity, sensitivity, positive predictive 
value (PPV), negative predictive value (NPV) and accuracy 
of the test set. 

Cell proliferation and colony formation

The cell proliferation was assessed using WST-1 (Roche, 
Basel, Switzerland) according to manufacturer instructions. 
Briefly, a total of approximately 1,000 cells were plated 
in 96-well plates, at 96–120 h after treated with miRNA 
mimics or inhibitors, added 10 µL/well of WST-1 solution 
and the cell proliferation curves were plotted using the 450 
and 630 nm absorbance. All experiments were performed 
in triplicate. For colony formation, 200 miRNA mimics 
or inhibitors treated cells were plated into 6-well plates 
and incubated in RPMI-1640 or DMEM medium with 
10% FBS at 37 ℃. Seven to ten days later, the cells were 
fixed and stained with 0.1% crystal violet. The number of 
colonies was counted, with a colony being defined as greater 
than 50 cells.

Western blot

Treated total cell lysates were prepared with sample buffer 
and boiled at 95 ℃ for 6 min. The samples were transferred 

to SDS-PAGE at 90 V for 2–3 h and then transferred to 
PVDF membranes for another 2–3 h. After incubation with 
specific primary antibodies at 4 ℃ overnight, the membranes 
were then washed by 1% TBST for three times, incubated 
with secondary antibodies for 1 h, and the membranes were 
developed using enhanced chemiluminescence (ECL) and 
exposed using Bio-Rad image system. 

Results

Four miRNAs levels are higher in the serum of patients 
with LC as compared to controls 

We previously used miRNA microarrays to analyze the 
expression profiles of 700 miRNAs in primary tumor tissue 
and sera from patients with LC (20,25). By analyzing 
both tissue and serum miRNAs expression, we discovered 
and verified that a 4-miRNA (miR-141, miR-193b, miR-
200b, miR-301) signature could be used as candidate 
biomarkers for early detection of LC (25) (Figure 1). To 
further verify this 4-miRNA signature, we measured it by 
qRT-PCR in the serum of a large, independent cohort of 
subjects including 213 with LC and 185 NCs (Table S1 and  
Figure S1). We found that all four miRNAs showed a 
significantly higher expression in the sera of LC patients 
compared to NC controls (P<0.0001) (Figures 2,S3). These 
results were consistent with our previous findings (25), 
validating that these 4-miRNAs were increased in LC as 
compared to NCs. 

We next analyzed the variability of these 4-miRNAs 
using several basic clinical variables including patient age, 
gender, smoking status, stage and lymph nodal metastasis. 
We did not find significant differential expression of these 
4-miRNAs with respect to age (Figure S4A,B), gender 
(Figure S4C,D) or smoking status [pack years (pky)]  
(Figure S4E,F). Additionally, the stage of cancer, presence 
of lymph node metastasis or tumor size did not have 
an impact on the expression levels of these 4-miRNAs.  
(Figure S4G,H,I).

Change in levels of serum 4-miRNAs in subtypes of LC 
and controls

Among 213 cancers in this study, there were 113 ACs, 56 
SCCs, 10 SCLCs, 17 LCCs and 17 pulmonary metastatic 
tumors (Figure S1A). Here we are asked whether there was 
a different abundance of these four miRNAs among these 
different histological subtypes of LC. We found that the 
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serum 4-miRNAs were relatively lower in SCC than in AC 
(P<0.05) although these 4-miRNAs were still significantly 
higher in SCC as compared to NCs (Figures 3,S5A). In 
SCLC, miR-301 was relatively lower as compared to AC.

The 185 NCs originated from two cohorts. The UM 
cohort included 5 subjects with benign lung disease, 48 
with lupus, 19 with reflux esophagitis and 27 normal 
healthy controls. The VA cohort included 86 subjects, with 
pky of smoking ranging from 30–210 (average 62 pky) 
(Figure S1C,D). We found that the serum 4-miRNAs were 
relatively lower in subjects with reflux esophagitis compared 
with other controls (P<0.05) (Figures 3,S5B). There was no 
significant variation in the concentration of these 4-miRNAs 
among VA smoker cohort or the UM cohort.

We then evaluated differences in the concentration of 
these 4-miRNAs based on whether the 86 smoking subjects 
had benign nodules on CT (n=39) or non-nodule controls 
(n=47) (Figure S1D). There was a total of 112 stage I LC 
with nodule size less than 4 cm. By comparing these 3 
groups of subjects, we found that the concentration of four 

miRNAs was significantly higher in early-stage LCs than in 
subjects with benign lung nodules or non-nodule controls 
(Figure S5C). There was no difference in serum 4-miRNA 
concentrations between subjects with benign nodules and 
non-nodules controls. These results further suggest that 
these 4-miRNAs could be considered to detect early LC. 

Serum 4-miRNA signature can predict LC 

We analyzed the performance of the 4 individual miRNAs 
by ROC curves to distinguish LC from NCs based in all 
398 subjects. We obtained AUC values of 0.775–0.934  
(Figure  S6 ) ,  i nd i ca t ing  the se  4  s e rum miRNAs 
concentrations are not only higher in cancers but also have 
excellent performance to distinguish cancer from NCs.

In our previously published study (25), we used a 
4-miRNA signature by combining these 4-miRNAs using 
logistic regression analysis to ascertain their ability to 
diagnose LC. Consistent with our published study, in 
this study, we combined the 4-miRNAs as a 4-miRNA 

Figure 2 Scatter plots showing the expression level (log2 value) of 4-miRNAs (A,B,C,D) in sera of 213 cancer and 185 controls. ***, cancer 
vs. control, P<0.0001. 4-miRNAs, 4-microRNAs.
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signature and used a logistic regression model to validate 
the performance of the signature as an accurate predictor 
of LC diagnosis. Since the methods used for miRNAs 
detection in this study were different from previous  
study (25) [In previous study, serum RNAs were isolated 
using miRVana PARIS kit (Ambion, Austin, TX, USA), 
cDNAs were pre-amplified before PCR and the assay for 
miRNA detection was TagMan technology], we have to 
calibrate the beta coefficients by a calibration (training) set. 
To do this, we first randomly sampled 2/3 of the subjects 
as the training (to calibrate the beta coefficients) set with 
266 subjects (145 cancers and 121 controls), the remaining 
1/3 was treated as the test (validation) set with 132 subjects 
(68 cancers and 64 controls) (Table 1, Figure 1). Next, in 
the training set, we fitted a logistic regression with these 
4-miRNAs with leave-one-out cross validation to build a 
prediction model. The AUC in the training set was 0.946 
[95% confidence interval (CI), 0.920–0.972] (Figure S7), 
and 0.921 (95% CI, 0.876–0.966) on the test set respectively 
with specificity of 90.6% and sensitivity 77.9%. The PPV 

was 89.8% and NPV 79.5% in the test set, with an accuracy 
of 84.1% (Figure 4). When we applied this prediction model 
to stage I and benign nodule control only in the test set, we 
obtained an AUC of 0.876 with specificity 78.6%, sensitivity 
80.6%, PPV 89.3%, NPV 64.7% and accuracy 80.0% 
(Figure S8). Since AC was the most common type of LC 
(n=113) in this study, we also applied this prediction model 
to AC cases only. We obtained an AUC of 0.942 on the test 
set with specificity 90.6%, sensitivity 83.3%, PPV 83.3%, 
NPV 90.6% and accuracy 88.0% (Figure S9). These results 
suggest that the 4-miRNA serum-based signature could be 
used as predictor of LC and distinguish benign pulmonary 
nodule from early LC although this study may be still 
in a phase 2 or early phase 3 for biomarker development 
according to Pepe et al JNCI 2001 (26). 

Cell proliferation and colony formation were affected by 
miR-141 and miR-193

In order to test if these 4-miRNAs are functional in LC, 
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we performed cell proliferation and colony formation 
experiments with these miRNA mimic or inhibitors 
treatment. We found that miR-141-3p mimic could increase 
colony formation and cell proliferation in LC cell lines, 
while miR-193-3p mimic could inhibit colony formation 
and cell proliferation in LC cell lines (Figure 5). We also 
found that miR-200b-3p mimic could inhibit colony 
formation, while miR-300a-3p not significant (Figure S10). 
Western blot indicated that CCND1, p-STAT3 and c-Myc 
were decreased after miR-193b-3p treatment, while p27 and 

CCNE1 increased (Figure 6), indicated that these proteins 
were involved in miR-193b-3p signaling in LC.

DAVID GO analysis of miRNA target genes

One miRNA could target many genes and one gene could 
be regulated by several miRNAs. In order to uncover 
potential molecular cellular biology process involved in 
these 4-miRNAs, we first selected the miRNA target 
genes using Targetscan website (http://www.targetscan.

Table 1 The demographic and clinical variables of patients in training and test sets

 Variables
Training set Test set

Case, n=145 (%) Control, n=121 (%) Case, n=68 (%) Control, n=64 (%)

Age, n (%)

<60 39 (26.9) 57 (47.1) 21 (30.9) 32 (50.0)

60–70 50 (34.5) 55 (45.5) 25 (36.8) 23 (35.9)

>70 56 (38.6) 8 (6.6) 22 (32.4) 8 (12.5)

Gender, n (%)  

Female 78 (53.8) 47 (38.8) 30 (44.1) 22 (34.4)

Male 67 (46.2) 73 (60.3) 38 (55.9) 41 (64.1)

Smoking status (pky), n (%)

<30 32 (22.1) 0 18 (26.5) 0

30–45 45 (31.0) 22 (18.2) 18 (26.5) 10 (15.6)

>45 49 (33.8) 35 (28.9) 26 (38.2) 19 (29.7)

Unknown 19 (13.1) 64 (52.9) 8 (11.8) 35 (54.7)

Stage, n (%)

I (n=112) 80 (55.2) – 32 (47.1) –

II (n=39) 26 (17.9) – 13 (19.1) –

III (n=31) 22 (15.2) –  9 (13.2) –

IV (n=7) 3 (2.1) – 4 (5.9) –

Unknown (n=7) 4 (2.8) – 3 (4.4) –

Histology, n (%)

AC 74 (51.0) – 36 (52.9) –

SCC 42 (29.0) – 12 (17.6) –

SCLC 5 (3.4) – 5 (7.4) –

LCC 9 (6.2) – 8 (11.8) –

Metas 10 (6.9) – 7 (10.3) –

AC, adenocarcinoma; SCC, squamous cell carcinoma; SCLC, small cell lung cancer; LCC, large cell lung cancer; Metas, pulmonary 
metastasis tumor; pky, pack years.
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org), then analyzed the biology signaling of these genes 
using DAVID GO. We found that cellular metabolic, gene 
expression, cellular developmental and cell differentiation 
etc. were the most regulated biology processes by  
miR-141 (Figure 7), cell death regulation by miR193, 
gene expression and metabolic process regulation by 
miR200b, and metabolic process regulation by miR301  
(Figures S11-S13).

Discussion

Detection of LC at an early-stage has the possibility of 
significantly reducing mortality with a greater chance of 
cure. MiRNAs are found in tissue, serum and plasma in 
a stable form protected from endogenous RNase activity 
and represent promising blood-based tumor markers  
(12,27-29). Two large-scale validation studies of serum/
plasma miRNA signatures for LC detection were reported 
recently from Italy (15,16). Sozzi reported that the 
diagnostic performance of a plasma 24-miRNA signature 
classifier (MSC) for LC detection had an 87% sensitivity 
and 81% specificity in smokers within the randomized 
Multicenter Italian Lung Detection (MILD) trial (870 
disease-free individuals and 69 LCs). Combination of both 
MSC and LDCT resulted in a five-fold reduction of LDCT 
false-positive rate to 3.7% (16). Another validation study of 
a 13-miR-Test was conducted in high-risk individuals (1,067 
cancer-free individuals and 122 cancers) enrolled in the 
Continuous Observation of Smoking Subjects (COSMOS) 
LC screening program. The overall accuracy, sensitivity, 

and specificity of the miR-Test were 74.9%, 77.8%, and 
74.8%, respectively, and the AUC is 0.85 (15). However, 
despite limitations addressed in the study, e.g., single 
randomized screening trial, these two studies included only 
a small number of LC subjects (69 and 122, respectively) 
potentially affecting the diagnostic accuracy as well as 
the greater number of miRNAs included in their panels  
(24 and 13 miRNAs, respectively) making it less cost-
effective. A recent systematic review of 20 studies indicated 
that the AUCs of various miRNAs for LC detection ranges 
from 0.62 to 0.94 (14). These studies have the potential to 
enhance the utility of miRNAs as serum/plasma/sputum 
biomarkers for the diagnosis, prognosis or monitoring 
of LC, however, there was only a small overlap in the 
reported miRNAs. Possible reasons include: (I) small 
sample sizes, e.g., most of these studies were included 
around 100 subjects, (II) miRNAs in serum and plasma 
may be different, (III) the variations in sample preparation, 
assays for detection, and data normalization strategies; and 
(IV) most serum/plasma based miRNAs for LC diagnosis 
included miRNAs also overexpressed in blood cells, which 
might have recapitulated the tumor-host interaction, but 
probably were not derived from the tumor (14-16,28,30-35). 

Our group discovered a novel 4-miRNA signature for 
LC diagnosis (25). To further verify this 4-miRNA signature 
for LC detection, we further examined the performance 
of this signature in a large independent cohort of sera 
from UM and VA institutes which included 213 LCs and  
185 NCs. By means of qRT-PCR assay, we verified that 
these 4-miRNAs were significantly higher in sera of LC 

Figure 6 Proteins affected by miR-193. (A) miR-193b expression affected by miR-193b mimic or inhibitor on H1299 and H1975 cells; (B) 
western blot of proteins affected by miR-193 mimic or inhibitor in LC cell lines. +, added with miR-193 or control; –, not added with miR-
193 or control. LC, lung cancer.
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patients as compared to controls. This expression was not 
related to patient age, gender, and smoking status, as well 
as tumor stage, tumor size and lymph node metastasis. We 
also found the 4-miRNAs levels were not different among 
different non-cancerous benign conditions. 

As described above, we used rigorous cut-off criteria for 
this 4-miRNA signature and random sampling to allocate 
training and test sets. A prediction model was built based 
on training set using logistic regression with leave-one-out 
cross validation. The predicted probability of having cancer 
for each subject in the test set was calculated by fitting 
logistic regression model. We found that the AUC was 0.921 
on the test set with specificity 90.6%, sensitivity 77.9%, 

accuracy 84.1%, PPV 89.8% and NPV 79.5%. Using this 
prediction model, we also obtained an AUC of 0.876 with 
specificity 78.6%, sensitivity 80.6% for the distinguish of 
stage I tumor to benign lung nodules.

There are several advantages to the present study. (I) 
We have confirmed the findings of our prior report in a 
different cohort of LC subjects (25). In this validation study, 
we used 213 tumors and 185 NCs. Thus, a total of 367 LCs 
and 230 NCs was used for the discovery and validation of 
this 4-miRNA signature (Figure 1). (II) Multiple types of LC 
were examined. In our previous study and other published 
studies (14), only few types of LC were included, e.g., AC 
and SCC, but in this study, we included all types of LC 

DAVID GO analysis of miR-141 target genes 
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and even LC metastasis from other organs. (III) Multiple 
types of NCs were included. Among the controls, we 
included subjects with normal healthy individuals, patients 
with benign lung disease, benign pulmonary nodules, 
individuals with heavy smoking history, and also subjects 
with non-pulmonary pathologies such as those with lupus 
and reflux esophagitis whose sera were not used in other 
studies (14). (IV) Most importantly, we used the preferred 
biomarker discovery/validation/prediction procedure  
(36-38), i.e., training-test model which was not used in most 
other studies (14). We also used other learning models e.g., 
support vector machine (SVM) and tree-based boosting, 
and obtained similar performance results (AUC, 0.91; data 
not shown). (V) This serum based 4-miRNA signature has 
better performance of AUC (0.921) than recently reported 
clinical variable and or CT-based 5 models (0.666–0.785) (6) 
regarding diagnosis/prediction of LC, as well as another 
two large-scale validation studies of serum/plasma miRNA 
signatures for LC detection from Italy (15,16).

The major limitations of this study include: (I) The 
subjects were come from only two institutes, UM and VA. 
We therefore plan to extend the study of this signature to 
other institutes, including China to compare the Caucasian 
and Asian populations. (II) This miRNA signature was not 
in combination with patient characteristics and/or image 
analysis on CT scans. The concurrent use of other methods 
such as tumor morphomics (TMP) may complement our 
blood-based signature biomarker. TMP analysis is a semi-
automated approach that aims to increase the diagnostic 
accuracy of CTs by providing reproducible, quantitative 
methods to evaluate various aspects of pulmonary nodules 
including density, homogeneity, and eccentricity. In 2014, 
Aerts analyzed 440 TMPs on 1,019 patients with lung or 
head-and-neck cancer, and demonstrated the prognostic 
role of TMP features that became a hallmark in TMP 
studies (39). We plan to combine TMP and serum 4-miRNA 
signature in the future to develop a robust biomarker that 
will supplant the need for biopsies to diagnose LC, when 
faced with indeterminate lung nodules seen on screening 
CT scans of high-risk individuals. 

In this study we have included 17 metastatic LCs with 
unknow original types of cancer. Since the average levels 
of these 4-miRNAs in the metastasis cancer were similar 
as other types of LC (P>0.05), we believe that these 
metastatic cancers could not affect our final prediction 
model. Regarding the 19 esophagitis controls, from  
Figure S5B, we can see that the average levels of these 

4-miRNAs (0.30–0.54) in esophagitis controls were lower 
than other controls (e.g., 0.53–0.92 in smoking). Further 
analysis of the reason of the difference between esophagitis 
and other controls, as well as if esophagitis affects the 
prediction model are warranted.

The miR-141 plays dual roles in different cancers. It 
could suppress cell proliferation/tumor growth in papillary 
thyroid, prostatic, liver, ovarian, brain, colorectal, pancreatic 
and renal cancers (40,41), but promote cell proliferation in 
LC (42). We found that miR-141-3p could increase colony 
formation and cell proliferation in LC cell lines. We found 
that miR-193-3p mimic could inhibit colony formation 
and cell proliferation via targeting CCND1 which was 
consistent with others (43,44). In most reports, miR-200b 
plays a tumor suppression role in cancer, we found that 
miR-200b was also inhibit colony formation in LC. We 
didn’t find miR-301b had roles on colony formation in LC. 
In DAVID GO of biology process analysis of target genes 
by these 4-miRNAs, we found that cellular metabolic, 
gene expression, and cell death regulation were the most 
regulated signaling. Further functional and mechanistic 
studies were warranted in the future in order to understand 
the role of these miRNAs in LC.

We have successfully validated our serum 4-miRNA 
signature in a large cohort of subjects by RT-PCR. This 
serum 4-miRNA signature may be used for detection of 
early LC in a heavy smoking population, but also may 
provide a complementary noninvasive biomarker for the 
diagnosis of LC in patients with lung nodules on screening 
CT scans. Further study of phase 4 prospective screening, 
phase 5 cancer control (26,37), as well as the function/
mechanism of these 4-miRNAs is warranted.
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Supplementary

Table S1 Age, gender and smoking status (pky) of patients and controls

Variables LC, n=213 (%) NC, n=185 (%) P value 

Age

<60 60 (28.2) 89 (48.1)

60–70 75 (35.2) 78 (42.2) <0.001

>70 78 (36.6) 16 (8.7)

Unknown 0 2

Gender

Female 108 (50.7) 69 (37.3)

Male 105 (49.3) 114 (61.6) 0.013

Unknown 0 2

Smoking status (pky)

<30 68 (31.9) 0

30–45 47 (22.1) 32 (17.3)

>45 72 (33.8) 54 (29.2) 0.852*

Unknown 26 (12.2) 99 (53.5)

*, 30–45 vs. >45, no smoking information from 99 UM controls. LC, lung cancer; NC, non-cancer control; UM, the University of Michigan 
Health System; pky, pack years.



Figure S1 Pie plots showing the distribution of subjects used in this study including 213 sera from LC subjects (A,B) (17 metas tumor was 
not included in B) and 185 sera from NCs (C,D). LC, lung cancer; NCs, non-cancer controls; AC, adenocarcinoma; SCC, squamous cell 
carcinoma; SCLC, small cell lung cancer; LCC, large cell lung cancer; Metas, metastatic cancers (from other primary cancers); VA, the 
Veterans Affairs Ann Arbor Health System; UM, the University of Michigan Health System.
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Figure S2 Scatter plot showing the repeatability of 4-miRNAs. (A,B,C,D) Peason correlation analysis in 20 sera with r value ranging 0.89–
0.93, P<0.001. 4-miRNAs, 4-microRNAs; PCR, polymerase chain reaction.

miR-141 

r=0.89, P<0.001

1st
 P

C
R

1st
 P

C
R

1st
 P

C
R

1st
 P

C
R

2nd PCR 2nd PCR

2nd PCR 2nd PCR

miR-200b

r=0.93, P<0.001 r=0.93, P<0.001

miR-301a

miR-193b

0.0 0.2 4.0 6.0 8.0

0.0 5.0 4.0 6.00.0 0.210.0 15.0

0.0 0.2 4.0 6.0 8.0

r=0.90, P<0.0016.0

5.0

4.0

3.0

2.0

1.0

0.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

12.0

10.0

8.0

6.0

4.0

2.0

0.0

A

C D

B

Figure S3 Boxplots showing the expression level (log2 value) of 4-miRNAs in sera of 213 tumors and 185 controls (A,B,C,D). ***, tumor vs. 
control, P<0.0001. 4-miRNAs, 4-microRNAs.
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Figure S4 4-miRNA levels in sera and age status in cancer (A) and controls (B); 4-miRNA levels in sera and gender status in cancer (C) and controls (D); 4-miRNA levels in sera and smoking status in cancer (E) and 
controls (F); 4-miRNA levels in sera and tumor stage (G); lymph node metastasis (H), and tumor size (I). 4-miRNA, 4-microRNA; ys, years; pky, pack years.
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Figure S5 The expression of 4-miRNAs in cancer and controls. (A) 4-miRNA levels in sera of different types of tumor; *, compared to AC 
by t-test, P<0.05; (B) 4-miRNA levels in sera of different types of control; *, compared to Health by t-test, P<0.05; (C) 4-miRNA levels in 
sera of benign lung nodules, non-benign pulmonary nodules and malignant pulmonary nodules (stage I cancers); **, compared to stage I by 
t-test, P<0.0001. 4-miRNA, 4-microRNA; AC, adenocarcinoma; SCC, squamous cell carcinoma; SCLC, small cell lung cancer; LCC, large 
cell lung cancer; Metas, metastatic cancers (from other primary cancers); VA, the Veterans Affairs Ann Arbor Health System.
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Figure S6 ROC curves showing the AUC values of 4 serum miRNAs (tumor, n=213 vs. control, n=185). ROC, receiver operating 
characteristic; AUC, area under the curve; miRNAs, microRNA.

Figure S7 Prediction results on training set. Randomly sample 2/3 of the data (log2 data) as training set (n=266), 1/3 as test set (n=132). 
Use logistic regression on the training set with leave-one-out cross-validation to build a prediction model. (A) The predicted probability on 
each subject on training set, (B) ROC and AUC, and (C) related diagnostic performance. ROC, receiver operating characteristic; AUC, area 
under the curve; PPV, positive predictive value; NPV, negative predictive value.
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Figure S8 Prediction results on test set (stage I tumor vs. benign nodule). Apply the logistic regression model from training set (n=266, same 
as Figure S7) to test set for stage I tumor (n=31) vs. benign nodule (n=14) only. Obtain AUC, ROC, sensitivity and specificity, PPV, NPV. 
(A) The predicted probability on each subject on test set, (B) ROC and AUC on test set, and (C) related diagnostic performance on test set. 
ROC, receiver operating characteristic; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.

Figure S9 Prediction results on test set (AC vs. controls). Apply the logistic regression model from training set (n=266, same as  
Figure S7) to test set for AC tumor (n=36) vs. controls (n=64) only. Obtain AUC, ROC, sensitivity and specificity, PPV, NPV on test set. 
(A) The predicted probability on each subject on test set, (B) ROC and AUC on test set, and (C) related diagnostic performance on test set. 
AC, adenocarcinoma; ROC, receiver operating characteristic; AUC, area under the curve; PPV, positive predictive value; NPV, negative 
predictive value.

Figure S10 Colony formation after miR-301a-3p mimic or miR-200b-3p treatment in H1299 LC cell line. LC, lung cancer.
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Figure S11 DAVID GO analysis of miR-193-3p target genes. GO, gene ontology.
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Figure S12 DAVID GO analysis of miR-200b-3p target genes. GO, gene ontology. 
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Figure S13 DAVID GO analysis of miR-301-3p target genes. GO, gene ontology.
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