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Anaplastic lymphoma kinase (ALK) gene translocations are 
pro-tumoral driver alterations, present in 3–7% of non-
squamous non-small cell lung cancers (NSCLC) (1). Patients 
affected by this tumor are frequently young, women, with 
a limited or absent history of smoking and often with a 
histologic diagnosis of a signet-ring cell adenocarcinoma (2). 
In approximately 30% of these patients central nervous 
system (CNS) involvement is present at diagnosis (3). In 
this setting, the main therapeutic strategy is represented by 
anti-ALK rearrangement tyrosine kinase inhibitors (TKIs). 
Crizotinib, a I generation multi-TKI, initially developed as 

a mesenchymal-epithelial transition factor (MET) inhibitor, 
was the first used in clinic due to results of PROFILE 
trials showing median progression-free survival (mPFS), 
objective response rate (ORR) and median duration of 
response (mDOR) higher than those of chemotherapy in 
all lines of treatment (4,5). Despite these results, after a 
median period of 10.9 months all patients progress due to 
the development, in approximately one third of patients, of 
acquired resistance mutations in the ALK tyrosine kinase 
domain, such as L1196M, G1269A, C1156Y, L1152R, 
G1202R, S1206Y, 1151Tins, F1174C, and D1203N. These 
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alterations increase the affinity for adenosine triphosphate, 
inducing conformational changes with steric hindrance and 
interference with the downstream signaling pathway (6-11). 
Other mechanisms of resistance are amplification of ALK 
fusion gene, alone or in combination with other molecular 
alterations (6), or bypass pathways such as amplification of 
epidermal growth factor receptor (EGFR) or of insulin-like 
growth factor (IGF-1R) or cKIT mutation (12-14).

Among 60–90% of patients receiving crizotinib has a 
CNS progression which is the first site of relapse in 46% of 
cases without evidence of extracranial worsening (3,15-17). 
This is attributed to poor CNS penetration by crizotinib 
as it is shown by the analysis of cerebro-spinal fluid from 
patients progressing in the CNS (18) and reinforced by 
the fact that ORR (33% vs. 18%) and prolongation in the 
median time to intracranial progression (13 vs. 7 months) 
are superior when crizotinib is given after radiotherapy than 
when is given alone (19) suggesting that prior radiation 
may probably increase the blood-brain barrier (BBB) 
permeability improving the CNS activity of crizotinib (20).

In order to overtake acquired resistance to crizotinib, 
prolong the control of the disease and manage CNS 
localizations, several II and III generation TKIs have been 
developed (Table 1), entering in clinic after the failure of 
crizotinib (ceritinib, alectinib, brigatinib and lorlatinib) 
(Table 2) and in first line setting (ceritinib, alectinib and 
brigatinib) (Table 3) while others are still under clinical 
evaluation for TKI-naive patients such as lorlatinib, 
ensartinib and entrectinib.

In this review we will discuss the most recent results 
of TKIs in order to describe a fast growing therapeutic 
landscape in this setting.

Alectinib (RO5424802/CH5424802, Alecensa)

Alectinib is a strong and selective, competitive with 
ATP, II generation TKI mainly directed against ALK 
and Rearranged during Transfection (RET) gene 
rearrangements (48). In vitro it shows a threefold increase 
of ALK inhibition (53 nM alectinib versus 150.8 nM 
crizotinib) by inducing caspase-mediated apoptosis in 
EML4-ALK cell lines, with a dose-dependent tumor growth 
inhibition (21). Its half maximal inhibitory concentration 
(IC50) is 1.9 nM while that of crizotinib is 3 nM (21). It 
is metabolized via hepatic CYP3A4 enzymes to M4, an 
active metabolite, and mainly excreted via the feces; mean 
terminal half-life is about 30 hours (49). Alectinib showed 
high efficacy against several crizotinib-resistant mutations 
in ALK, including L1196M, G1269A, C1156Y, F1174L, 
1151Tins, and L1152R but not G1202R (8,21). The drug 
strongly penetrate the CNS, as shown in intracranial tumor 
implantation model where it is able to inhibit the growth 
of ALK-positive CNS lesions; in this model p-glycoprotein 
(P-gp) doesn’t transport the drug, showing a relevant CNS-
to-plasma ratio (50).

Alectinib was initially evaluated in 2 phase I/II trial: 
in the first trial among 46 Japanese patients with ALK 
rearranged, untreated NSCLCs, 2 (4.3%) complete 
responses (CR) and 41 (89.1%) partial responses (PR) 
were seen with 7 having disease control for more than  
6.5 months (51). The second phase I trial was conducted 
in US patients in crizotinib-resistant NSCLCs: objective 
responses (OR) were noted in 55% of patients with 2% CR, 
32% PR, 20% unconfirmed PR; 36% of patients had stable 
disease (SD). Eleven (52%) out of 21 patients with baseline 
CNS metastases showed OR of which 6 (29%) CR, 5 (24%) 

Table 1 Targeting features of II and III generation anti-ALK TKIs

Drug Main target IC50 on ALK (nM) Activity against secondary ALK mutations Ref. 

Alectinib ALK, RET 1.9 L1196M, G1269A, C1156Y, F1174L, 1151Tins, 
L1152R 

(8,21) 

Ceritinib ALK, ROS1, IGF-1R 0.15 L1196M, G1269A, S1206Y, I1171T (22) 

Brigatinib ALK, EGFR L858R, ROS1, FLT3 1.5–12 All, including G1202R and L1196M (23,24) 

Lorlatinib ALK, ROS1 1.3 All, including G1202R (25-27) 

Ensartinib ALK, TPM3-TRKA, TRKC, ROS1, 
EphA2, EphA1, EphB1, c-MET 

<4 F1174, C1156Y, L1196M, S1206R, T1151, 
G1202R 

(28,29) 

Entrectinib ALK, ROS1, TRK 12 G1269A, C1156Y, L1196M (30) 

ALK, Anaplastic lymphoma kinase; RET, rearranged during transfection; IGF-1R, insulin growth factor-1 receptor; EGFR, epidermal growth 
factor receptor; TKIs, tyrosine kinase inhibitors; IC50, half maximal inhibitory concentration; Ref., references.
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PR and 8 (38%) SD (52). Twenty-six per cent of patients in 
the Japanese trial showed treatment-related adverse events 
(TRAEs) grade 3–4 toxicity and 8% in the American trial, 
being represented by decreased neutrophil count, increased 
blood creatine phosphokinase, γ-glutamyl transpeptidase 
and hypophosphataemia (51,52).

In the crizotinib-resistant NSCLC setting, the 
pooled analysis of 2 phase II trials confirmed ORR of 
51.3%, disease control rate (DCR) of 78.8%, mDOR of  
14.9 months, mPFS of 8.3 months and median overall 
survival (mOS) of 26.0 months (31-33). The pooled analysis 
confirmed also the activity against CNS metastases with 
an intracranial ORR (iORR) of 64.0%, DCR 90.0% and 
mDOR 10.8 months iORR was 35.8% in patients with 

prior radiotherapy and 58.5% in those untreated (31,32,34). 
Most adverse events (AEs) were grade 1 to 2 (32); in 40% 
of patients grade 3 or higher AEs occurred, leading to 
treatment withdrawn or interruptions or modification 
in 6–33% of patients (33). The most common grade 3–4 
AEs were represented by changes in laboratory values, 
such as increase of blood creatine phosphokinase and of 
transaminases (31).

In the ALUR trial superiority of alectinib versus 
platinum-based chemotherapy in advanced, crizotinib-
resistant NSCLC was assessed by an independent review 
committee (IRC) in terms of PFS (7.1 vs. 1.6 months), 
ORR of CNS baseline lesions (54.2% vs. no responses). 
The treatment period was longer in the alectinib arm (20.1 

Table 2 II and III generation TKIs in crizotinib pre-treated patients

Drug Phase ORR, % mDOR, mo mPFS, mo iORR, % Ref. 

Alectinib II 51.3 14.9 8.3 64 (31-34)

III – 20.1* 7.1 54.2 (35)

Ceritinib I 56 – 6.9 65 (36)

II 38.6 9.7 5.7 45 (37)

III – – 5.4 – (38)

Brigatinib I/II 83 – 13.2 53† (39)

II 54 – 12.9 67 (40)

Lorlatinib I 57 11.7 9.6 – (41)

II 47 NR NR 87 (42)

Ensartinib I/II 69 – 9.0 69 (43)

*, weeks; †, in patients with measurable intracranial lesions. TKI, tyrosine kinase inhibitors; ORR, objective response rate; mDOR, median 
duration of response; mPFS, median progression-free survival; iORR, intracranial objective response rate; mo, months; Ref., reference; 
NR, not reached. 

Table 3 Clinical trials in TKIs-naive patients

Drug Control arm
ORR, % mPFS, mo iORR, %

Ref.
Exp. Control Exp. Control Exp. Control

Alectinib Crizotinib 92 79 NR 10.2 – – (44)

Crizotinib 82.9 75.5 NR 11.1 85.7* 71.4* (45)

Ceritinib Chemotherapy 72.5 26.7 16.6 8.1 72.7 27.3 (46)

Brigatinib Crizotinib 71 60 67† 43† 78 29 (47)

Lorlatinib – 90 – NR – 66.7 – (42)

*, in patients with previous radiotherapy; †, intended as estimated 12-month progression-free survival. TKIs, tyrosine kinase inhibitors; 
ORR, objective response rate; Exp., experimental; mPFS, median progression-free survival; iORR, intracranial objective response rate; mo, 
months; Ref., reference; NR, not reached. 
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versus 6.0 weeks). Alectinib showed 27.1% of grade 3 AEs 
while chemotherapy 41.2%; treatment discontinuation 
due to AEs was 5.7% with alectinib and 8.8% with 
chemotherapy (35).

Finally alectinib was evaluated in first line in untreated 
patients compared crizotinib in two phase III, randomized 
trials. The first one, the J-ALEX study, showed in a 
Japanese population a PFS not reached at the moment 
of publication in the alectinib arm while with crizotinib 
PFS was  10.2  months ;  OR was  92% versus  79%  
respectively (44). The second trial, the ALEX trial 
performed in the Caucasian population, showed similar 
activity with a 12-month event-free survival rate of 68.4% 
with alectinib versus 48.7% with crizotinib. The hazard 
ratio (HR) for disease progression or death in the alectinib 
arm was 0.47 and the mPFS in the experimental arm 
not reached; ORR was 82.9% with alectinib and 75.5% 
(P=0.09) with crizotinib (45). Investigator-assessed PFS 
with alectinib was similar between patients with (HR 
0.40, 95% CI: 0.25–0.64) and without (HR 0.51, 95% 
CI: 0.33–0.80, P interaction =0.36) CNS metastases at 
baseline, independently to a previous radiotherapy. Time to 
progression of brain metastases was longer in the alectinib 
arm and similar patients with and without baseline CNS 
metastases (P<0.0001); alectinib obtained an iORR of 85.7% 
in patients who underwent to radiotherapy and of 78.6% in 
not treated CNS lesions while crizotinib an iORR of 71.4% 
and 40.0%, respectively (53). In the two trials grade 3-5 
AEs were 41% with alectinib and 50% with crizotinib (45).

Ceritinib (LDK378, Zykadia)

Ceritinib is a potent and selective, ATP-competitive, 
oral TKI, directed against rearrangement of ALK and 
protooncogene receptor tyrosine kinase (ROS1) and 
alterations of insulin growth factor-1 receptor (IGF-1R). 
It’s able to inhibit ALK with 20-fold greater potency than 
crizotinib in enzymatic assays with an IC50 of 0.15 nM 
with a more durable antitumor activity (22). Cytochrome 
CYP3A metabolizes ceritinib which is mainly excreted via 
feces (92.3% vs. 1.3% via urine) (54). Ceritinib is highly 
active against the most common crizotinib-resistance 
mutations, including L1196M, G1269A, S1206Y and 
I1171T (22). Finally a tissue distribution study in rats shows 
that ceritinib cross the blood brain barrier, with a brain-to-
blood exposure ratio of approximately 15% (36).

The development of ceritinib was conducted in 
the ASCEND program, starting with the phase I trial 

conducted in TKI-naive and TKI-pretreated patients: ORR 
was 72.0% and 56.0%, respectively; mPFS was 18.4 and  
6.9 months. Among patients with confirmed brain 
intracranial involvement, DCR was 79% in TKI-naive and 
65% TKI-pretreated patients. The most frequent grade 
3–4 AEs were increased alanine aminotransferase (30%), 
increased aspartate aminotransferase (10%), diarrhoea and 
nausea in 6% of patients (36).

The phase II (ASCEND-2) trial involved patients 
progressing after crizotinib and 2 or more other treatment 
regimens, encompassing also people with asymptomatic or 
neurologically stable baseline CNS metastases: ORR was 
38.6%, DCR 77.1%, median time to response 1.8 months, 
mDOR 9.7 months and mPFS 5.7 months. Among 100 
patients with baseline brain metastases, iORR was 45.0%. 
Adverse events were in the majority grade 1 or 2; the most 
frequent were nausea (81.4%), diarrhea (80.0%), and 
vomiting (62.9%). Improvement in quality of life was shown 
by patient-reported outcomes (37).

In the phase III (ASCEND-4) trial treatment-naive 
population was randomized to receive ceritinib or platinum-
based chemotherapy: blinded IRC showed a mPFS of  
16 .6  months  wi th  cer i t in ib  vs .  8 .1  months  wi th 
chemotherapy (HR 0.55; 95% CI: 0.42–0.73; P<0.00001). 
Diarrhoea (85%), nausea (69%), vomiting (66%) and 
increase in alanine aminotransferase (60%) were the most 
frequent AEs with ceritinib (46). Confirmation of those 
results were obtained in the phase III trial (ASCEND-5) 
in which patients at failure of chemotherapy and crizotinib 
were randomized to receive ceritinib or chemotherapy 
with mPFS of 5.4 months (95% CI: 4.1–6.9 months) in 
ceritinib arm and 1.6 months (1.4–2.8 months). Forty-three 
per cent of patients receiving ceritinib experienced serious 
adverse events (SAEs) vs. 32% in the chemotherapy group. 
Increased alanine aminotransferase concentration (21%), 
increased γ glutamyltransferase concentration (21%) and 
increased aspartate aminotransferase concentration (14%) 
were the most represented grade 3–4 AEs in patients treated 
with ceritinib (38).

Given the high incidence of AEs, the phase Ib 
(ASCEND-8) trial compared in term of activity and 
tolerability 3 different doses of ceritinib after a light 
breakfast instead at fasted state showing that the smallest 
one, 450 mg with food, demonstrated pharmacokinetic 
parameters comparable to those obtained with the 
registative dose, 750 mg fasted (55). The arm receiving  
450 mg showed the lowest proportion of patients with dose 
reductions, of patients with gastrointestinal toxicities and 



Delmonte et al. New generation ALK inhibitors

© Translational lung cancer research. All rights reserved.   Transl Lung Cancer Res 2019;8(Suppl 3):S280-S289 | http://dx.doi.org/10.21037/tlcr.2019.09.14

S284

the longest mDOR; ORR was similar in the 3 arms (56).

Brigatinib (AP26113, Alunbrig)

Brigatinib is a synthetic, oral, II generation TKI able 
to inhibit ALK kinase with a stronger potency than  
crizotinib (23), exerting dual inhibition of ALK and EGFR 
(epidermal growth factor receptor) (L858R) in humans (24). 
It shows high selectivity in inhibiting ROS1, FLT3, and 
mutant variants of FLT3 (D835Y) but low activity against 
EGFR with a T790M resistance mutation (L858R/T790M), 
native EGFR, IGF1R (23). Brigatinib is mainly metabolised 
by CYP2C8 and CYP3A4 in vitro. About 3.5% of brigatinib 
gets metabolised to its primary metabolite, less potent, 
and 92% remain unchanged. Hepatic elimination is the 
major route of excretion, 65% of administered dose being 
recovered from feces and 25% from urine (57,58). Steady state 
maximum concentration is reduced to be about 13% when 
administered after high fat meal (59). In orthotopic brain 
tumor model, brigatinib showed a prolongation of median 
survival of mice and a significant reduction of intracranial 
tumor burden more actively than crizotinib (23). Brigatinib 
displays an inhibitory profile against all 17 known resistance 
mutations of ALK, including the G1202R and L1196M, 
superior than that of crizotinib, ceritinib and alectinib (23).

Brigatinib was initially evaluated in a phase I/II trial. 
After a 3+3 dose escalation phase in which the dose-
limiting toxicities (DLT) were increased transaminases 
and dyspnoea, the phase 2 part evaluated 3 oral once-daily 
regimens into 5 cohorts: TKI-naive NSCLC (cohort 1), 
crizotinib-pretreated NSCLC (cohort 2), EGFR T790M-
positive NSCLC resistant to previous anti-EGFR TKI 
(cohort 3), solid tumors with abnormalities of the molecular 
pathways, targets of the drug (cohort 4) and crizotinib-
naive or crizotinib-treated NSCLC with active, measurable, 
intracranial CNS metastases (cohort 5). Responses were 
seen only in NSCLCs: ORR was 100% in cohort 1, 74% in 
cohort 2 and 83% in cohort 5. The mPFS was not reached 
in crizotinib-naive patients and 13.2 months in crizotinib-
pretreated patients; probability of OS at 1 year was 100% 
and 78%, respectively. In the cohort 5 iORR was 53% in 
patients with CNS measurable lesions and 35% in the non-
measurable disease group. Intracranial mPFS was 15.6 
months, increasing to 22.3 months for patients with no 
prior radiotherapy. The most active dose was represented 
by 180 mg daily but the occurrence of pulmonary events 
within the first week of treatment, higher with this dose 
and causing dose interruption, leaded to a schedule with a 

7-day lead-in dose of 90 mg daily followed by 180 mg daily 
continuously. Across all doses increased lipase concentration 
(9%), dyspnoea (6%) and hypertension (5%) were the most 
represented grade 3–4 TRAEs (39).

Those data were subsequently confirmed in the phase 
II, ALTA trial in which patients progressing to crizotinib 
were randomized to receive brigatinib at 90 mg daily in 
arm A or 180 mg daily with a 7-day lead-in at 90 mg in 
arm B: ORR was 45% in arm A and 54% in arm B; iORR 
in patients with baseline CNS target lesions 42% (11 of 
26 patients) and 67% (12 of 18 patients) respectively; PFS  
9.2 months and 12.9 months respectively. Common TRAEs 
were mainly grades 1–2 and were mainly represented by 
nausea, diarrhea, headache and cough (40). Given these 
results arm B schedule of brigatinib was compared to 
crizotinib in the first line setting in the phase 3 ALTA-
1L trial. At the first interim analysis the rate of PFS was 
higher in the experimental arm with an estimated 12-month 
PFS of 67% compared to 43% (HR 0.49; P<0.001) in the 
crizotinib arm; ORR was 71% with brigatinib and 60% 
with crizotinib; iORR among patients with measurable 
lesions was 78% and 29%, respectively, without new safety 
data (47).

Lorlatinib (PF-06463922, Lorviqua)

Lorlatinib is a III generation macrocyclic, ATP-competitive, 
oral TKI showing potent inhibition against ALK (Ki 1/4 
0.70 nM) and ROS1 rearrangement (Ki 1/4 0.025 nM) 
(25,26). In vitro and in vivo metabolite assays, lorlatinib 
was able to alter PK of concomitant drugs substrate of the 
CYP/CYP450 pathways, leading to the contraindication 
to CYP3A inhibitors since 12 days prior to the first dose 
of lorlatinib in clinical trials. It is active against all known 
resistant mutants for I and II generation ALK inhibitors 
including G1202R (27): in fact mean IC50 values against 
G1202R of lorlatinib, crizotinib, ceritinib and alectinib 
were 80, 560, 309, and 595 nM, respectively, permitting 
to conclude that only lorlatinib inhibits this target (27). 
Lorlatinib was developed from crizotinib in order to 
facilitate the CNS penetration and to reduce the P-gp-
dependent efflux (25,60). In fact BBB penetration was 
shown by assays in a non-human primate model while in 
mouse models the systemic and intracranial efficacy of 
lorlatinib increased the survival (61).

The drug was evaluated initially in a phase I trial 
encompassing patients with advanced, NSCLC of 
which ALK-rearranged patients, TKI-naive or progressing 
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after at least 1 previous TKI, represented the 76% of 
trial population. In this group ORR was 46% with 7% 
CR, 39% PR and 20% SD; ORR 57% in patients with 
a previous ALK TKI and 42% in those treated with 2 or 
more ALK TKIs. The estimated mDOR was 11.7 months 
for those previously treated; mPFS was 9.6 months being  
13.5 months for patients treated with 1 previous TKI and 9.2 in 
those with 2 or more TKIs. The most common TRAEs were 
hypercholesterolaemia (72%), hypertriglyceridaemia (39%), 
peripheral neuropathy (39%) and peripheral oedema (39%) but 
the only DLT was grade 2 neurocognitive alterations (slowed 
speech, mentation, and word-finding difficulty) (41).

These data are at present under evaluation in a phase II 
trial involving a similar population in 6 different expansion 
cohorts (EXP1–6) according to previous treatments and 
the status of molecular drivers. Preliminary data were 
published concerning ALK-rearranged NSCLC cohorts 
encompassing patients TKI naïve (EXP1), crizotinib-
pretreated without (EXP2) or with (EXP3A) previous 
chemotherapy, with 1 previous non-crizotinib TKI with 
or without chemotherapy (EXP3B) and with 2 (EXP4) or 
3 (EXP5) previous TKIs with or without chemotherapy. 
In EXP1 OR was 90.0%; in EXP2–5 OR was 47.0% being 
69.5% in EXP2-3A, 32.1% in EXP 3B and 38.7% in 
EXP4–5. In patients with CNS measurable lesions iORR 
was 66.7% in EXP1, 87.0% in EXP2–3A, 55.6% in EXP3B 
and 53.1% in EXP4–5. In all the expansions mDOR 
was not reached nor in the intracranial neither in the 
extracranial disease; mPFS was not reached in EXP 1 and in 
EXP2–3A but it was 5.5 months (in EXP3B and 6.9 months 
in EXP4–5. The most common TRAEs across all patients 
were hypercholesterolaemia (81% overall and 16% grade 
3–4) and hypertriglyceridaemia (60% overall and 16% 
grade 3–4). Serious TRAEs occurred in 7% of patients and 
only 3% permanently discontinued treatment because of 
iatrogenic toxicity. CNS effects of any cause were reported 
in 39% of patients, including changes in cognitive function 
(23%), mood (22%) and speech (8%) and were grade 1 or 2 
in severity, transient, intermittent, and reversible after dose 
modifications (42).

Finally the drug has been compared to crizotinib in the 
Phase III CROWN study (NCT03052608) of which the 
enrollment was recently concluded.

Ensartinib (X-396)

Ensartinib (X-396) is a novel II generation, aminopyridazine-

based ALK-TKI able to inhibit both wild-type ALK and all 
evaluated ALK variants (F1174, C1156Y, L1196M, S1206R, 
T1151, and G1202R mutants) with in vitro IC50 of <4 nM; 
it also potently inhibits TPM3-TRKA, TRKC, ROS1, 
EphA2, EphA1, EphB1 and c-MET (28). Preclinical data 
demonstrated increased potency of the drug as compared 
with crizotinib and other II generation TKIs (29).

Safety and efficacy were evaluated in a phase I/II trial: 
in the phase I part the maximum tolerated dose was not 
reached and the most common TRAEs were rash (56%), 
nausea (36%), pruritus (28%), vomiting (26%), and fatigue 
(22%). Differently to other II generation ALK TKIs, 
ensartinib induced grade 3–4 toxicity in 23% of patients 
mainly represented by rash and pruritus. In fact the 
concentration of ensartinib was 9.0 times higher in the skin 
than in the plasma at 12 hours after its single dose. In the 
phase II part 60 patients with advanced ALK-rearranged 
NSCLC were evaluated: the DCR was 81.7%, ORR 
60% and mPFS 9.2 months. In TKI-naive patients ORR 
was 80% and mPFS 26.2 months; in those progressing 
to crizotinib ORR was 69% and mPFS 9.0 months; in 
patients progressing after 2 lines of TKIs mPFS was  
1.9 months (62). Twenty-six patients had at baseline brain 
metastasis with iORR of 69%, including 1 CR, 31% SD; 
DCR was 100% in patients with CNS target lesions. In 
those with unmeasurable lesions 1 CR was achieved and 8 
pts had SD (43).

Data from the phase III trial comparing ensartinib to 
crizotinib, which have closed the enrollment in 2018, are 
awaited.

Entrectinib (RXDX-101)

Entrectinib is a potent, orally available, ATP competitive 
inhibitor of the ALK, ROS1 and TRK family rearrangements. 
In biochemical assay, entrectinib inhibits ALK and ROS1 
with IC50 values of 12 and 7 nmol/L, respectively. In  
in vitro and in vivo models entrectinib showed activity 
against ALK-rearranged NSCLC, efficiently crossed the 
BBB with drug levels within the brain comparable with or 
exceeding plasma levels and showed a strong intracranial 
activity. It showed good antiproliferative activity with strong 
activity against G1269A mutation, slight loss of potency 
in presence of C1156Y and L1196M ALK-resistance 
mutations and minimal activity on G1202R mutant (30).

Different schedules of the drug were evaluated 
into 2 phase I/II trials, the Alka-372-001 trial and the 
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STARTRK-1, enrolling solid tumors with rearrangements 
of TRK family, ROS1 or ALK. In the 2 trials 27 patients 
with ALK-rearranged solid tumors were present. Among 
the 19 patients, pretreated with 1 or more ALK TKIs, no 
response to entrectinib was seen. In the remaining 7 TKI-
naive patients ORR was 57% (95% CI: 25–84%) and 
responses were observed in ALK -rearranged NSCLC, 
renal cell carcinoma and colorectal cancer. Median DOR 
in ALK population was 7.4 months (95% CI: 3.7 months–
not reached) with a mPFS of 8.3 months (95% CI:  
4.6–12 months); mOS wasn’t reached (95% CI: 19 months–
not reached) and the proportion of patients surviving at 
12 months was 89.4% (95% CI: 75.5–100%). No DLTs or 
significant safety issues were reported in the 2 trials with the 
majority AEs of only grade 1 or 2 (63-65).

Conclusions

ALK rearranged NSCLC is a relatively rare disease for 
which a rich amount of new targeted drugs is present with 
an activity, both in terms of extra and intracranial disease, 
stronger than that of the first in class, first generation TKI 
crizotinib. These drugs differ for the targeting profile, 
especially against resistance mutations to previous TKIs, 
suggesting that their use may be defined according to 
the biological evolution of the tumor. For this reason 
clarification of several molecular aspects is strongly required. 
Moreover they differ for the safety profile showing specific 
toxicity features that may influence their choice according 
to patient characteristics. For instance, the knowledge of 
these biological and clinical aspects is necessary to define 
the best strategy of therapeutic sequence in order to give to 
patients the strongest and longest response, with the best 
quality of life.
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