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Introduction

Lung cancer is the leading cause of cancer-related mortality 
worldwide, accounting for 22% or 2.09 million deaths in 
2018 (The World Health Organization: https://www.who.
int/news-room/fact-sheets/detail/cancer, accessed on Jan 04, 
2020). The molecular basis of the highly aggressive biology 
of lung cancers remains largely unclear, despite efforts to 
identify complex genomic aberrations occurring in various 
histological subtypes of this disease (1,2). Treatments of lung 
cancer patients are determined by multiple factors including 
tumor histology, stage and biomarker status, the latter 
include actionable driver mutations and the expression level 
of immune checkpoint programmed death-ligand 1 (PD-
L1) (3). For patients with actionable driver mutations, there 
are currently many clinically approved targeted therapies, 
most of which target the protein product of mutated 

oncogenes. Activating mutations in the tyrosine kinase 
domain of the epidermal growth factor receptor (EGFR) gene 
were the first genomic alterations in non-small cell lung 
cancer (NSCLC) to be successfully targeted (4-8). Since 
then, many kinase inhibitors have been developed and used 
as first-line treatment for patients with mutations in other 
actionable drivers, including ALK, ROS1, NTRK, RET, 
BRAF and MET, and have shown significant improvement 
in patient survival (9). Similarly, for patients with high levels 
of immune checkpoint PD-L1, immunotherapy has also 
prolonged survival compared to chemotherapies (10,11).

However, the initial responses to therapies almost 
always result in eventual therapeutic resistance, due to 
development of additional mutations or yet unidentified 
factors. Against this backdrop of poor disease prognosis 
with current approved treatment options, patient-derived 
lung cancer models continue to be developed for gaining 

Patient-derived cell line, xenograft and organoid models in lung 
cancer therapy 

Ku-Geng Huo#, Elisa D’Arcangelo#, Ming-Sound Tsao

University Health Network and Princess Margaret Cancer Centre, Toronto, Canada

Contributions: (I) Conception and design: All authors; (II) Administrative support: MS Tsao; (III) Provision of study materials or patients: None; (IV) 

Collection and assembly of data: K Huo, E D’Arcangelo; (V) Data analysis and interpretation: K Huo, E D’Arcangelo; (VI) Manuscript writing: All 

authors; (VII) Final approval of manuscript: All authors.
#These authors contributed equally to this work.

Correspondence to: Ming-Sound Tsao, MD, FRCPC. 101 College Street Toronto, ON M5G 1L7, Canada. Email: Ming.Tsao@uhn.ca.

Abstract: Lung cancer accounts for most cancer-related deaths worldwide and has an overall 5-year 
survival rate of ~15%. Cell lines have played important roles in the study of cancer biology and potential 
therapeutic targets, as well as pre-clinical testing of novel drugs. However, most experimental therapies that 
have cleared preclinical testing using established cell lines have failed phase III clinical trials. This suggests 
that such models may not adequately recapitulate patient tumor biology and clinical outcome predictions. 
Here, we discuss and compare different pre-clinical lung cancer models, including established cell lines, 
patient-derived cell lines, xenografts and organoids, summarize the methodology for generating these 
models, and review their relative advantages and limitations in different oncologic research applications. We 
further discuss additional gaps in patient-derived pre-clinical models to better recapitulate tumor biology and 
improve their clinical predictive power.

Keywords: Lung cancer; preclinical models; organoid; xenograft; cell line; patient-derived models; 3D culture

Submitted Jan 15, 2020. Accepted for publication Apr 21, 2020.

doi: 10.21037/tlcr-20-154

View this article at: http://dx.doi.org/10.21037/tlcr-20-154

2232

Review Article on New Developments in Lung Cancer Diagnosis and 
Pathological Patient Management Strategies

https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.who.int/news-room/fact-sheets/detail/cancer
https://crossmark.crossref.org/dialog/?doi=10.21037/tlcr-20-154


2215Translational Lung Cancer Research, Vol 9, No 5 October 2020

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2020;9(5):2214-2232 | http://dx.doi.org/10.21037/tlcr-20-154

better understanding of the molecular pathobiology of lung 
cancers, identification of novel therapeutic targets which 
may also serve as disease or treatment biomarkers, as well 
as testing of novel agents as new therapies, thus contribute 
to further improvement of precision medicine. This review 
will discuss and compare current patient-derived lung 
cancer models and their limitations, including cell lines, 
patient-derived xenografts (PDXs) and patient-derived lung 
cancer organoids (LCOs).

Established cancer cell line models

Cancer cell lines have traditionally been the most commonly 
used models to study tumor biology and pharmacogenomics. 
The National Cancer Institute (NCI) and the Hamon 
Cancer Center (HCC) lines are the two largest series of 
lung cancer cell lines that have been established; most of 
these are available to researchers worldwide through the 
American Type Culture Collection (ATCC, Manassas, 
VA, USA). Additional cell line repositories have been 
established in various countries, e.g., CellBank Australia, 
European Collection of Authenticated Cell Cultures (United 
Kingdom), Japanese Collection of Research Bioresources 
Cell Bank, Deutsche Sammlung von Mikroorganismen und 
Zellkulturen and the Riken BioResource Center Cell Bank 
(Japan). 

Cell line models in lung cancer research 

Due to their relative ease of handling and ready availability, 
cell lines have been widely used in numerous studies in lung 
cancer. Drug sensitivity observed in cell lines may mimic 
clinical drug response. For example, cell lines with EGFR 
aberrations (PC-9 cells with exon 19 deletion and H3255 
cells with L858R mutation) showed sensitivity to the EGFR 
TKIs erlotinib, afatinib, rociletinib and osimertinib. In 
contrast, H1975 cells, which bear both L858R and T790M 
mutations, responded only to the new-generation TKIs 
afatinib, rociletinib and osimertinib (12), although it has 
been reported that T790M mutation may also confer 
resistance to afatinib in the clinic (13). Another well-
studied EGFR-mutated cell line, HCC827, was also shown 
to respond to the monoclonal antibody cetuximab (14).  
Multiple groups have reported that the RAF-inhibitors 
dabrafenib and vemurafenib, as well as the MEK-inhibitor 
trametinib, were able to inhibit the growth of cell lines 
with activating BRAF mutations including V600E (15,16). 
Similarly, the growth of cell lines bearing ALK fusions 

could be inhibited by ALK inhibitors (17,18). However, 
coactivation of EGFR and HER2 could confer resistance to 
ALK inhibitors in one of these cell lines (17).

The generally simple, low cost and rapid culture of 
cell lines is practical for large-scale studies, including 
pharmacogenomics projects such as the Cancer Cell 
Line Encyclopedia (CCLE) (19), the Genomics of Drug 
Sensitivity in Cancer (GDSC) (20-22), the Cancer 
Therapeutics Response Portal (CTRP) (23) and the 
Genentech Cell Line Screening Initiative (gCSI) (24,25). 
These projects combine massively parallel-omic profiling 
including genomics, copy number variation (CNV) 
analysis and transcriptomics, with screening of drug 
responses to more than 100 drugs on hundreds of cancer 
cell lines (including over 100 lung cancer lines), in order 
to identify associations between molecular markers and 
drug sensitivity. These valuable databases allow researchers 
worldwide to identify genes and drug responses in specific 
cell lines of interest. Machine learning models have also 
been applied to interrogate these pharmacogenomics 
datasets based on cancer subtypes or molecular markers 
(26,27). Another large-scale screening project using cancer 
cell lines is the Connectivity Map (CMap), which explores 
gene expression changes after drug treatments (28,29). 
The CMap study generated over a million gene expression 
profiles in 3 to 77 cell lines before and after treatments 
with 42,080 perturbagens, including 19,811 small molecule 
drugs, 18,493 shRNAs, 3,462 cDNAs and 314 biologics. 
Their data provide information on drug responses in cancer 
cell lines on the RNA level, from which researchers have 
identified drugs that can potentially be repositioned to treat 
cancer. Using the CMap data, Jahchan et al. (30) reported 
that the tricyclic antidepressant imipramine, the Histamine 
H1 receptor antagonist promethazine and the calcium 
channel blocker bepridil can reverse the small cell lung 
cancer (SCLC)-associated gene signatures, and showed 
anti-tumor effects in both in vitro and in vivo SCLC models. 

Cell lines are also relatively easy to work with for 
genetic manipulations, as compared to other models. For 
instance, a loss-of-function study using the CRISPR-
Cas9 system would be technically more challenging if 
carried out in organoid or PDX models (see next sections). 
Moreover, cell lines enable clonal selection and expansion 
to validate and select for positive knock-out cells (Figure 1).  
CRISPR-Cas9 loss-of-function studies enable us to identify 
essential genes in different cancer subtypes and test for 
synthetic lethality relationships between specific genes and 
driver mutations. For example, CRISPR/Cas9 knockout 
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of focal adhesion kinase (FAK) in NSCLC cells with 
mutant KRAS showed sensitization to radiotherapy (31).  
In a further study, mutant EGFR-specific knockout by 
CRISPR/Cas9 was shown to inhibit the proliferation 
of the EGFR-mutated lung cancer cell line H1975 and 
to reduce tumor volumes of xenografts implanted with 
H1975; this was not observed when using A549 lung 
cancer cells that carry wild-type EGFR alleles (32).  
As discussed previously, cell line models facilitate large-scale 
studies: The Achilles project performed a genome-wide scale 
CRISPR-Cas9 knockout screen to identify essential genes in 
689 lines of different cancer types, including 97 lung cancer 
cell lines, in the 19Q4 release (33-35). Although still in its 
infancy, CRISPR-Cas9 cell engineering may hold great 
promise in future cell therapy. 

Limitations of cell line models 

Important limitations of these models must be considered. 
Cell lines likely represent a subpopulation of the original 
tumor and are largely homogenous, due to the selective 
survival pressures present in culture conditions devoid of 
the original microenvironment involving interactions with 
stromal, immune and inflammatory cells (36,37). As a result, 
there are genetic and epigenetic differences between the 

cell lines and the original tumors, which make it difficult to 
evaluate how much of the original tumor biology is retained 
in established cell line models that have been maintained 
long-term in vitro (38). The lack of cell-cell interactions 
within a three-dimensional (3D) environment also limits the 
translational potential of cell line studies. However, in an 
effort to elevate the relevance of two-dimensional (2D) cell 
cultures for modelling patient disease, lung cell lines have 
been utilized in a variety of studies to develop engineered 
microenvironments (so-called ‘on-chip’ culture approaches) 
to allow for growth in 3D, as well as growth in co-cultures 
with stromal cells (endothelial cells, immune cells and 
fibroblasts) (39-41). Such 3D on-chip cultures have shown 
superiority for modeling drug sensitivity over traditional 
2D culture (42).

Differences between the 2D and 3D culture conditions 
may become apparent when examining surface marker 
expression: for example, expression of TTF1 (a marker for 
lung adenocarcinoma) and TP63 (a marker for squamous 
cell carcinoma) was found to be similar between the 
adenocarcinoma and squamous cell lines included in the 
CCLE project, with more than half of the squamous 
cell lines having very low TP63 expression (Figure 2, 
Raw data obtained from https://portals.broadinstitute.
org/ccle, accessed on Sep 3rd, 2019). This contradicts 

Figure 1 Schematic of CRISPR-Cas9 knockout system. PAM, protospacer adjacent motif; NHEJ, non-homologous end joining; PDX, 
patient-derived xenograft.
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the clinical histopathology finding that 70–80% of lung 
adenocarcinoma are positive for TTF1, while lung 
squamous cells are negative for TTF1 and 100% positive 
for TP63 (43,44). While these discrepancies might be 
attributed to differences between the output of RNA-
seq and immunohistochemistry (IHC) assays, others have 
reported no significant difference between TTF1 mRNA 
and IHC protein expression (45). These contradictions 
highlight the importance of ascertaining whether cell 
lines of interest in fact retain certain key aspects of tumor 
biology, prior to their use in specific studies. 

Theoretically, experimental results generated using 
the same line in different laboratories should be directly 
comparable. However, in practice, this may not be the case. 
Haibe-Kains et al. reported a poor concordance between 
the CCLE and the GDSC drug response data (46), and 
although improved consistency was obtained using a different 
statistical approach, poor correlation was still observed in some 
cases, especially in cell lines with poor drug sensitivity (47).  
It should be noted that even when comparing drug 
response of the same drug and the same cell line, results 
may be affected by differences in experimental protocols. 
Standardization of methodology would certainly help to 
improve the consistency of cell line experimental results 
across different laboratories. 

Primary patient-derived cell culture models

As established cell lines have undergone unspecified long-
term passaging in vitro, they may no longer faithfully 
represent the molecular heterogeneity of primary patient 
tumors. Comparison of transcriptomic and/or proteomic 

profiles of patient NSCLC tumors and established cell lines 
have demonstrated significant divergence (48,49). More 
recently, a new technique involving Rho-associated kinase 
inhibitor-induced conditional programming to develop 
primary lung cancer cell cultures derived from patient 
biopsy samples has been reported with a ~50% success rate 
(50,51). These models might better retain the molecular 
characteristics of patient tumors and be a better alternative 
to study cancer biology and drug sensitivity. The generation 
of these primary cell cultures is of particular importance for 
studies aiming at guiding decision making in the clinic, due 
to the speed at which they can be established, as well as the 
concordance of drug responses between the patients and the 
respective cell lines (52). 

Patient-derived tumor xenograft (PDX) models

PDXs are cancer models established by engrafting and 
growing human tumor tissue/cells in animal host, most 
commonly immunodeficient or humanized mice (53,54). 
Unlike cell lines that grow in vitro under non-physiological 
conditions, PDX models grow in a 3D microenvironment, 
which includes vasculature that provides in vivo delivery 
of nutrients and oxygen, and host stromal and immune 
cells interact and communicate with the tumor cells. 
PDXs mostly retain the genomic and phenotypic profiles 
of the original patient tumors, thus may better reproduce 
the cl inically observed drug response (49,55-57).  
Thus, PDXs hold promise as better pre-clinical models 
in personalized medicine, for which they may be used 
to predict drug-responses and potentially guide patient 
therapies.

Methodology of generating PDX models

PDX tumors have primarily been established from solid 
tumors and most published lung cancer PDX models were 
established using surgically resected tumors. However, 
successful engraftment can also be achieved using smaller 
tissue samples, such as computed-tomography (CT)- and 
endobronchial-ultrasound (EBUS)-guided biopsies (58-60).  
The latter approaches have been particularly useful in 
generating SCLC PDXs, since these patients seldom 
undergo surgical resection of the tumor (61,62). Different 
types of tumor histologies and collection methods may 
impact on the success rate of engraftment. In NSCLCs, the 
engraftment rates range from 25–60% (43,49,50,54,57-63)  
(Table 1), with squamous cell carcinoma having a higher 

Figure 2 CCLE RNA-seq data on TTF1 and TP63 expression in 
lung adenocarcinoma and lung squamous cell carcinoma. TTF1, 
Transcription Termination Factor 1; TP63, Tumor Protein P63. 
Raw data obtained from https://portals.broadinstitute.org/ccle, 
assessed on Sep 3rd, 2019.
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Table 1 Representative large studies of Lung PDX model development 

Publication Patients Tissue collection Mouse strain Engraftment rate Engrafted tumor histology [n]

Fichtner et al. (55) NSCLC Surgical resection NOD/SCID 25/102 (24.5%) Adenocarcinoma [6]

Squamous [12]

Others [7]

Wang et al. (49) NSCLC Surgical resection NOD/SCID 127/441 (28.8%) Adenocarcinoma [52]

Squamous [62]

Others [13]

Hao et al. (64) NSCLC Surgical resection NOD/SCID 23/88 (26.1%) Adenocarcinoma [11]

Squamous [9]

Others [3]

John et al. (63) NSCLC Surgical resection NOD/SCID Adenocarcinoma 30/96 (31.1%) Adenocarcinoma [30]

Squamous 29/45 (64.4%) Squamous [29]

Others [4]

Nakajima et al. (60) NSCLC& 
SCLC

EBUS-guided 
biopsy

NSG Adenocarcinoma 3/12 (25%) Adenocarcinoma [3]

Squamous 2/3 (66.7%) Squamous [2]

Small cell carcinoma 2/3 (66.7%) Small cell carcinoma [2]

Large cell carcinoma 1/1 (100%) Large cell carcinoma [1]

Fang et al. (65) NSCLC& 
SCLC

Surgical resection BALB/c nude 
mice

N/a Adenocarcinoma [15]

Squamous [68]

Others [16]

Kang et al. (66) NSCLC Surgical resection 
& biopsy

NOD and nude Adenocarcinoma 30/92 (32.6%) Adenocarcinoma [30]

Squamous 11/30 (36.7%) Squamous [11]

Kita et al. (67) NSCLC Surgical resection NSG & SHO Adenocarcinoma 13/48 (27.1%) Adenocarcinoma [13]

Squamous 6/10 (60%) Squamous [6]

Large cell carcinoma 1/2 (50%) Large cell carcinoma [1]

Cuenca et al. (68) NSCLC Surgical resection SCID Adenocarcinoma 9/28 (32.1%) Adenocarcinoma [9]

Squamous 6/19 (31.5%) Squamous [6]

Adenosquamous [1]

Drapkin et al. (56) SCLC CTC NSG 16/42 (38.1%) Small cell carcinoma [16]

Hodgkinson et al. (69) SCLC CTC NSG 4/6 (66.7%) Small cell carcinoma [4]

NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; CTC, circulating tumor cell; NOD, nonobese diabetic; SCID, severely 
compromised immune deficient; NSG, NOD-SCID gamma. 
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take rate than adenocarcinoma (60,63,67). The ability of 
resected NSCLC to engraft and form PDX is strongly 
associated with poorer patient prognosis (49). In SCLCs, 
EBUS-guided biopsies have a 67–83% success rate in PDX 
establishment (61,62). 

Circulating tumor cells (CTCs) can be non-invasively 
collected from blood, and these cells generally have acquired 
greater metastatic potential (70). Given the low number of 
CTCs in NSCLC patients, generating NSCLC PDXs from 
CTCs has been technically challenging (71), with only one 
case study found in the literature (72). In contrast, most 
SCLC patients with advanced stage disease release high 
numbers of CTCs (73,74), and since surgical resection is 
rarely performed in SCLC patients, CTCs have become an 
important material source for SCLC PDXs establishment. 
Reported engraftment rate for CTC-derived SCLC PDXs 
ranged between 38% (16/42) to 67% (4/6), depending on 
the CTC counts in patient blood samples (56,69). 

In most studies, immunodeficient mice are used as 
the animal host to generate PDX models. One of the 
most commonly used immunodeficient mice is the non-
obese diabetic (NOD)-severely compromised immune 
deficient (SCID) mouse, which lacks mature T and B cells 
and has deficient natural killer cell function (57,75). To 
enhance engraftment rates, NOD-SCID gamma (NOD.
Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice, also known as NSG mice, 
have been developed from a NOD-SCID background with 
additional interleukin 2 receptor gamma chain impairment. 
This causes deficient cytokine signaling and consequently 
enhanced immunodeficiency. NSG mice also have longer 
lifespans compared to NOD-SCID mice, which appear to 
have higher rates of developing thymic lymphomas (76,77). 
However, PDXs generated in immunodeficient mice cannot 
efficiently be used to study immunotherapies, since an 
intact immune system, and preferably one of human origin, 
is required. For this purpose, humanized mice have been 
developed by engrafting human leukocytes and purified 
CD34+ hematopoietic stem cells into immunodeficient 
mice. Hematopoietic stem cells can be obtained from 
different tissue sources, including umbilical cord blood, 
bone marrow, fetal liver and neonatal thymus (78-81). 
Rosato et al. demonstrated increased human cytokine levels 
in not only the plasma, but also the tumors of humanized 
NSG mice compared to non-humanized NSG mice (82). 
Further, it has also been shown that the growth of human 
stromal and immune cells can be maintained in humanized 
mice, therefore better mimicking the original tumor 
microenvironment (83). 

Few technical considerations may help to enhance the 
success rate of PDX tumors establishment with a higher 
degree of patient fidelity. For example, solid tumors can be 
first dissociated and injected into host animals as single-
cell suspension; this may potentially avoid selection of 
clonal subpopulation of the tumor for engraftment (77). 
This approach also allows genetic manipulations of the 
tumor cells prior to engrafting. Dissociated tumor cells can 
be mixed with matrix protein cocktail Matrigel to increase 
the rate of successful engraftment and growth of tumor 
cells (84). Patient tumors can be implanted heterotopically 
or orthotopically into the host animals. Most studies on 
lung cancer PDX models use heterotopic implantation, 
which provides the advantages of an easy procedure and 
accurate tumor size measurements. On the other hand, 
orthotopic implantation should better recapitulate the 
native tumor environment of lung cancer and enable the 
study of metastasis, but this is technically challenging (85). 
Only few labs have used this approach to make lung cancer 
PDX models, where a tumor fragment is sewn into the left 
lung or placed into the left thoracic cavity in a thoracotomy 
procedure (68,86). Cuenca et al. reported a 30.8% (16/52) 
engraftment rate in NSCLC models using orthotopic 
implantation (68). 

PDX models in lung cancer research 

Our lab has demonstrated that NSCLC PDXs with EGFR 
exon 19 deletion and L858R mutations responded to 
first/second generation EGFR TKIs (gefitinib, erlotinib, 
dacomitinib and afatinib), consistent with clinical 
observations (87). In contrast, a PDX model with both 
EGFR exon 19 deletion and T790M mutations is resistant 
to gefitinib/erlotinib, but responded to cetuximab (87,88). 
Zhang et al. have reported that a lung PDX model with 
KRAS mutation was resistant to gefitinib (89), agreeing 
with clinical data (90,91). We have also shown that lung 
squamous carcinoma models bearing PIK3CA E542K 
mutations are sensitive to PI3K inhibitors, and CDK4/6 
inhibitors conferred a synergistic anti-tumor activity when 
used in combination with PI3K inhibitors (92). Several 
groups have demonstrated sensitivity of PDXs established 
from lung cancer patients with ALK gene rearrangement 
to ALK inhibitors (65,66). In contrast, a PDX model 
established from a patient who developed resistance to 
multiple ALK inhibitors demonstrated a similar response 
profile as observed clinically (93). Ambrogio et al.  
demonstrated that dual inhibition of DDR1 and the 
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Notch signaling pathway induced tumor regression in 
KRAS-mutated PDXs, opening up the possibility of using 
the combination of dasatinib and Notch inhibitor (e.g., 
demcizumab) to treat patients with KRAS mutations (94,95), 
for whom there currently is no targeted therapy available. 
Both NSCLC (55) and SCLC (96) PDX models show 
responses to chemotherapies similar to those observed 
in clinical settings. In SCLC, EZH2 inhibition provides 
synergistic tumor suppressive effect when combined with 
chemotherapies, even in chemoresistant PDX models (97). 
Nevertheless, PDXs do not always accurately predict patient 
response. For example, although it has been reported that the 
ERK1/2 inhibitor CC-90003 (98) and the XPO-1 inhibitor 
KPT-330 (99) were able to repress tumor growth in PDXs, 
neither showed encouraging results in clinical trials. 

Immunotherapies have revolutionized cancer treatment 
and have led to promising clinical outcomes in various 
types of advanced cancers, including lung cancer (3). There 
is increasing interest in testing immunotherapy responses 
using PDX models established in humanized mice. Hu 
et al. observed an anti-tumor response upon adoptively 
transferring human T cells that express melanoma antigen 
MART-1-specific T cell receptors to their humanized 
melanoma PDXs (100). Anti-PD-1 antibodies have also 
shown anti-tumor effects in humanized triple-negative breast  
cancer (82), osteosarcoma (101) and lung cancer (102) 
models. In lung cancer specifically, anti-PD-1 checkpoint 
inhibitors were shown to inhibit tumor growth in humanized 
mice engrafted with A549 lung tumor cells (102).

In contrast to in vitro cell line assays, large-scale 
experiments are more difficult to perform in PDXs. 
Nevertheless, efforts in this direction are underway and 
Gao et al. (103), for example, recently published a high-
throughput drug screening project using PDXs of various 
cancer types with different driver mutations, allowing 
discoveries of associations between biomarkers, pathway 
activation and drug sensitivity in different cancer subtypes. 

Limitations of PDX models 

Although PDXs retain tumor heterogeneity and potentially 
better mimic tumor biology and microenvironment 
compared to cell lines, several limitations and challenges 
apply to this type of models. Compared to cell lines and 
3D organoids (see next section), the establishment of PDX 
models is more time-consuming and costly, especially 
when using humanized mice. Concerns have been raised 
regarding potential genetic drift of tumor cells in xenografts 

of late passages, though several studies have shown that no 
major genetic difference could be found through at least 10 
passages. Nevertheless, it is common practice to limit PDX 
experiments to less than 10 passages (104-106). When non-
humanized mice are used, the original human stromal and 
immune cells are replaced by mouse stromal cells after serial 
passages, thereby losing the contribution of human stromal 
cells to the original tumor biology (55,107). Overall, the 
methodology of PDX establishment remains suboptimal 
and current efforts in this field are devoted to better 
recapitulate the patient tumor and microenvironment, and 
to increase engraftment rate in order to lower the cost.

Patient-derived LCOs

Because 2D cell cultures retain only limited analogy to 
their parent tissue (108), scientific focus has shifted to 
3D cell culture strategies (109). Specifically, patient-
derived cell populations can be grown in a 3D extracellular 
matrix, giving rise to structures termed organoids, which 
are characterized by their capacity to self-organize into 
structures that are reflective of the tissue they are derived 
from (110). Tumor organoids have been generated from a 
large number of tissues, most recently also from lung. 

Because of the genotype-phenotype similarity to their 
parent tumors, as well as the possibility of rapid expansion 
for drug sensitivity assays, tumor organoids represent 
preclinical tools of great relevance to patient disease. For 
example, a recent study comparing DNA copy numbers in 
breast tumor organoids and 2D cell lines to patient tumors 
found greater concordance between tumor samples and 
organoids over 2D cell lines (111), indicating that organoids 
may be a more apt culture system to model patient tissue 
heterogeneity (112,113).

Methodology of generating LCO models

Patient-derived LCOs require growth within a supporting 
3D matrix, most commonly Matrigel (114,115), as well 
as a defined cocktail of growth factors and inhibitors. 
The formulation of this growth media varies between 
laboratories (113,116-119) (Table 2), but all formulations 
contain factors for lung stem cell maintenance. While the 
only factor common to all reported LCO-specific media 
formulations is the B27 supplement, an optimized serum 
substitute initially utilized for neuronal cell cultures (120), 
growth factors included are either epidermal growth factor 
(EGF) or members of the fibroblast growth factor (FGF) 
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family, and inhibitors/activators of specific pathways, 
namely TGF-β  and Rho-associated protein kinase 
(inhibited) and Wnt (activated). LCOs may be generated 
from tumor biopsies or resections and can be maintained 
in both short- and long-term (> passage 10) cultures, with 
reported high overall success rates of culture initiation 
(approx. 90%) (113,118). Specifically, tumor tissue is 
minced and dissociated enzymatically to obtain single cells, 
which are then typically mixed with Matrigel, deposited 
in so-called domes (i.e., large droplets) in 24- or 48-well 
plates, and finally topped with the appropriate growth 
medium. Whether or not this procedure yields viable 
and proliferating LCOs depends on a number of factors, 
including cell viability after tissue digestion and cellularity 
of the tumor tissue processed. Alternatively, LCOs can be 
established form CTCs isolated from blood (73,121). 

Contamination of cultures by normal lung epithelium 
was identified in a number of studies attempting to grow 
LCOs (118,119,122), whereby normal cell clusters tend 
to outgrow LCOs in these cultures (113). This is possibly 
due to the genetic instability and consequently increased 
cell death in LCOs (123) or because all published LCO 
media are based on stem cell media formulations supportive 
of normal epithelial growth. Besides manually separating 
LCOs from normal lung organoids based on their 
morphological appearance (the feasibility of this approach 
remains unclear), Sachs et al. achieved pure LCO cultures 

through the addition of Nutlin-3A, which specifically 
inhibits the growth of TP53 wild type cells and thus, when 
added to TP53 mutant LCOs, will lead to drop-out of 
normal epithelium from cultures (118). Alternatively, the 
use of a suboptimal medium for LCO culture was most 
recently described by Kim et al., which did not support 
normal cell growth (119). 

To this date, only a handful of studies have documented 
the establishment of patient-derived LCOs (113,116-
119,122,124,125), whereby the success rates of long-term 
culture establishment vary substantially (Table 2), and 
detailed descriptions of the number of passages achieved 
and split ratios used were typically not reported. An 
exception to this is the distinction between long and short-
term models described by our lab (113), where long-term 
LCO cultures were defined as achieving passage 10 (and 
a corresponding culture time of over 3 months), while the 
rest were deemed short-term cultures. The efficiencies 
of culture establishment for these models were 15% and 
72%, for long- and short-term, respectively. The following 
sections largely focus on insights from the few available 
LCO studies to date, as well as from pertinent papers 
investigating tumor organoids in other tissues. 

LCO resources and characterization

Large collections of patient-derived LCOs, as well 

Table 2 Summary of LCO culture strategies 

Publication Media composition ECM composition Culture setup
Reported successful 
culture time

Neal et al. 
(116)

ADMEM/F12 + HEPES, Glutamax, Pen-Strep, NALC, 
B-27 (- vit. A), R-spondin 1, Noggin, Nicotinamide, A 
83-01, SB-202190, Wnt3a, Gastrin, EGF

Rat tail type 1 
collagen 

Tumor pieces in ALI 
culture

Up to 100 days in culture

Tamura  
et al. (117)

FBIM002 medium NA Tumor pieces in 
suspension culture

Over 6 months

Sachs  
et al. (118)

ADMEM/F12 + NALC, B-27, R-spondin, Noggin, 
Nicotinamide, A 83-01, SB202190, Y-27632, FGF7, 
FGF10

BME type 2 Dome culture NA

Kim  
et al. (119)

DMEM/F12 + Pen-Strep, B-27, Y27, bFGF, EGF, N2 GFR MG Dome culture Over 6 months

Shi  
et al. (113)

ADMEM/F12 + HEPES, Glutamax, Pen-Strep, 
NALC, B-27, Noggin, A 83-01, Y-27632, FGF10, 
FGF4, EGF, CHIR 99021, SAG

GFR MG Dome culture Over 10 passages, over 3 
months in culture

ADMEM, advanced DMEM; Pen-Strep, penicillin/streptomycin; EGF, epidermal growth factor; FGF, fibroblast growth factor; SAG, 
smoothened agonist; NALC, N-Acetyl-L-cysteine; FBIM002 - media pertaining the Fukushima Translational Research Project; NA, not 
applicable; ALI, air-liquid interface; BME, basement membrane extract; GFR MG, growth factor reduced Matrigel. 
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as normal lung organoids, are being established and 
biobanked (123,126). At the basis of such efforts lies the 
observation that LCOs closely resemble the genotypic 
and histological heterogeneity of their parental tumors. 
Immunohistochemical analyses of LCOs saw major lung 
tumor subtypes reflected in LCO cultures, using markers 
such as TTF-1, cytokeratin 5 and synaptophysin for 
adenocarcinoma, squamous cell carcinoma and small cell 
carcinoma, respectively (113,116,119). Implantation of 
patient-derived LCOs into mice resulted in growth of 
tumor xenografts at variable success rates (30–100%) and 
with preserved parental tumor histology, proving LCO 
tumorgenicity (113,118,119).

LCOs further maintained defining genetic characteristics 
from their parental tumors. Next generation sequencing 
of LCOs and tumors revealed the presence of matching 
somatic mutations, such as TP53, KRAS, EGFR and others, 
which are commonly associated with NSCLC (1,127); 
no discordant driver mutations were observed. Analyses 
including SNP genotyping, variant allele frequency 
distribution analysis and CNV profiling similarly showed 
that concordance could generally be maintained between 
LCOs and their parental tissues during long-term culture, 
highlighting that clonal stability in LCOs is, at least for a 
certain number of passages, preserved (113,118,119).

Gene-drug correlation studies

Cancer organoids can be used to model human diseases and 
as a platform for drug screening (128). Across tumor types, 
studies correlating drug sensitivity and genotype data, have 
demonstrated that drug responses generated in patient-
derived organoids are in line with the molecular profiles 
of their parental tumors (126). For example, erlotinib was 
effective against the growth of LCOs with EGFR exon 
19 deletions (113). Kim et al. (119) observed resistance 
to erlotinib in one LCO line, despite the presence of an 
EGFR mutation, but genomic analysis revealed the presence 
of MET amplification, which is associated with EGFR 
TKI resistance. Our lab further demonstrated the use of 
LCOs to identify potential combination treatments (113).  
Using an FGFR1-mutated LCO line insensitive to FGFR1 
inhibitor BGJ398, we examined the efficacy of BGJ398 
in combination with either a MEK inhibitor (trametinib) 
or a PI3K inhibitor (BKM120), both of which have been 
reported to decrease the growth of LUSC in cell line 
studies (129,130), and found a synergistic effect of the 
former combination in LCO cultures. This finding was 

then validated in the parental PDX model. 
LCOs can also be generated from tumors further 

along the metastatic cascade. For example, SCLC CTCs 
spontaneously formed ‘tumorospheres’ in culture, even 
without the need for lung stem cell media (74). These 
CTC-derived tumorospheres expressed all typical SCLC 
markers and showed reduced chemosensitivity, compared 
to CTC single cells. This may possibly suggest that the 
growth of CTCs as clusters, rather than as single cells, 
could explain the commonly observed chemoresistance in 
relapsed SCLC patients.

Exploring different treatment strategies in patient-
derived LCOs during the patients’ lifetime would represent 
a powerful approach for informing personalized care. Such 
efforts are underway: for NSCLC specifically, patient-
derived LCOs are being screened with 8 different therapeutic 
agents at The Netherlands Cancer Institute, with the aim 
of identifying effective drugs, in order to offer patients the 
option to adjust their treatment accordingly (126).

Screening for drug target discovery

One of the most cited reasons for the low success rate in 
clinical trials is the utilization of 2D cell cultures as pre-
clinical disease model systems (131). Tumor organoids 
may represent an improved tool for drug screens aiming 
to identify novel actionable molecular targets. While no 
large-scale drug screen has been attempted using LCOs yet, 
the overall approach shows promise in other tumor types, 
including colorectal cancer (132) and ovarian cancer (133).  
Pauli et al .  (134) described high-throughput dose 
response screening on four tumor organoid lines against  
160 compounds (FDA approved and under development) 
in mono- and combination treatment. Subsequent to hit 
validation in PDXs, this study was able to identify effective 
treatment strategies for two endometrial carcinoma 
lines, for which there are no currently approved targeted 
therapies, and two colorectal carcinoma lines.

Studies have found that different media formulations (see 
Table 2) are supportive of growth of tumor cells that carry 
genetic markers (e.g., EGFR), as well as protein markers 
(e.g., TTF-1, p63, cytokeratin 5) of interest, confirming that 
the in vitro cultures generated are, as far as these markers 
are concerned, representative of patient material. Beyond 
this, it remains unclear how the presence of different growth 
factors in media formulations affects marker expression at 
the protein level and the response to different drugs. To our 
knowledge, to date there has been no comparative study 
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of organoid marker expression or drug responses in the 
different published media formulations.

Modeling of the tumor microenvironment

As the presence and heterogeneity of stromal cells within 
a tumor mass may alter treatment response, LCO cultures 
will need to include stromal cell types, in order to model 
disease in a more comprehensive way (135). Given the very 
encouraging successes in immunotherapy, the first studies 
investigating tumor-stroma relationships using LCOs have 
focused on incorporating immune cells into LCO cultures; 
to this date, studies specifically exploring fibroblast- LCO 
or endothelial cell-LCO relationships are still lacking. 

While defined media are successful for growing LCOs, 
the same media also lead to the loss of stromal cell fractions 
during LCO establishment. This is because certain factors 
are specifically inhibitory to fibroblast proliferation, [e.g., 
Noggin, B27 supplement and various TGBβ inhibitors (136)],  
and immune and endothelial cells drop out from cultures 
over time (116). To include stromal populations into LCO 
cultures, two approaches have been reported. Neal et al. 
have generated 20 en-bloc LCO cultures that maintain 
their original stromal cell fraction for several passages by 
culturing minced tumor tissues in air-liquid interphase (ALI) 
culture (116), which recapitulated the tumor T- and B-cell 
repertoire. Anti-PD-1 antibody induced TIL-mediated 
check-point inhibition in one out of three NSCLC LCO 
lines examined and tumor cell killing was further assessed 
in tumor organoids from various tissues. Overall, this study 
demonstrated the possibility of culturing en-bloc LCOs for 
short term studies, which preserve a functional immune 
component.

A second approach for establishing tumor-stroma LCOs 
is to recombine stromal and parenchymal tumor fractions 
after culturing them separately. For example, the interaction 
between patient-derived LCOs and infiltrating T cells 
was investigated by co-culturing tumor epithelial cells and 
autologous blood lymphocytes. In this system, tumor cell 
killing by reactive T-cells occurred, indicating the utility of 
this culture method for assessing patient sensitivity to T-cell 
based therapies (122). 

This re-combination approach has also been utilized 
for co-culturing tumor organoids and activated fibroblasts 
in pancreatic cancer studies. To model the functions 
of carcinoma associated fibroblasts (CAFs) present in 
desmoplastic PDAC stroma, PDAC organoids were 
established and co-cultured with murine fibroblast 

progenitors (136). Upon activation by tumor organoids, 
CAFs adopted one of two identified phenotypes: CAFs in 
direct contact with organoids upregulated α-smooth muscle 
actin (α-sma) expression and TGFb response genes, while 
CAFs located further away from organoids secreted IL-6, a 
potent pro-survival signal for PDAC organoids. Separately, 
in a library of 39 PDAC organoids, CAFs were found to 
provide a Wnt niche required for maintenance of tumor stem 
cells, thereby supporting early tumor development (137).  
Tsai et al. also established co-culture pancreatic tumor 
organoids to study pancreatic cancer progression and 
fibroblasts activation, as well as tumor-dependent 
lymphocyte infiltration (138). Such studies particularly 
apply to LCOs, as desmoplasia commonly occurs in lung 
cancers and CAF-mediated effects on tumor growth and 
drug sensitivity have been amply reported (139,140). For 
example, one study using lung tumor spheroids formed 
by the PC-9 cells in 3D co-culture with CAFs identified 
a pro-proliferative role of specifically podoplanin-positive 
CAFs on lung tumor cells (141), further demonstrating the 
heterogeneous effects of CAF subpopulations on disease 
progression. 

Overall, the field of tumor organoid co-cultures is in 
its infancy, with disease modelling being the primary goal 
of current studies. Particularly for LCOs, no methods 
for stable, long-term cultures of stromal-parenchymal 
organoids have been identified, nor have media formulations 
across laboratories been standardized. However, even initial 
results, particularly with respect to immune cell-tumor cell 
interactions, indicate that the use of stroma-parenchymal 
LCOs for biomarker identification, drug screening and 
modeling of therapy resistance lies in the near future. 

Drawing inspiration from the established on-chip 
models initially generated for use with cell lines, efforts 
are underway for using LCOs in microfluidic or otherwise 
engineered microenvironments. On-chip culture platforms 
have been used to model various tumors using organoids 
and other cell types (including endothelial cells for 
neovascularization), and the reader is referred to expert 
reviews describing the different on-chip setups, their uses 
and limitations (142-145). Because culture media for LCO 
growth have only recently emerged, to the best of our 
knowledge only one study has described the use of LCOs in 
an on-chip application (125). Jung et al. used a microfluidic 
setup with continuous media flow for generating small 
cell LCOs for sensitivity testing of the drugs cisplatin and 
etoposide; LCO death was identified in a dose-dependent 
manner. Microfluidic devices have further been used to 
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isolate and expand lung CTCs and patient immune cells 
from liquid biopsies (146), by using laser ablation to 
generate an array of microwells, and seeding CTCs and 
white blood cells into these to allow cluster formation. This 
platform can then be used to assess CTC drug response.

Limitations of LCOs

Patient-derived LCOs have to date effectively been 
used for disease modeling, genotype-phenotype studies 
and drug sensitivity testing, and have already proven to 
be exceptionally useful models for evaluating targeted 
therapeutics in a patient-specific fashion. However, certain 
aspects of current LCO culture methods represent hurdles 
that hamper the use of this model for different applications. 

Firstly, robust strategies for parenchymal-stromal co-
cultures are lacking, thereby impeding long-term studies of 
stromal involvement in tumor growth, drug sensitivity and 
resistance (147). Secondly, factors present in LCO medium, 
such as small molecule inhibitors, may alter drug responses. 
A second issue with regard to media formulations is that 
it remains unclear to what extent tissue ‘maturation’ is 
inhibited in LCO cultures, i.e., to what extent media factors 

inhibit cellular differentiation (148). Similarly, it is known 
that Matrigel, the most common matrix environment for 
LCO growth, is an abundant source of growth factors 
and plays a role in suppressing differentiation. In fact, a 
number of alternative, natural and synthetic, polymers are 
being explored for organoid growth (148). Further, culture 
scalability represents a major bottleneck, especially for 
high-throughput drug screening applications, as LCOs vary 
wildly in growth dynamics (149). Finally, due to the lack of 
viable blood supply and waste removal, LCOs suffer from 
size-dependent cell death; incorporation of endothelial cells 
or appropriate use of engineered culture technologies may 
eliminate this phenomenon (150).

Conclusions

Patient-derived models help researchers better understand 
cancer biology and genetics, allowing identification of 
biomarkers for clinical diagnosis and prediction of drug 
response. Some models, i.e., cell lines, have been used 
extensively in lung cancer research, while others have 
recently emerged, such as organoids, and their exploitation  
remains in infancy. This review has discussed the 

Figure 3 Methodology and applications of preclinical patient-derived lung cancer models. Solid lines represent greater compatibility 
between models and applications. Dashed lines represent lesser compatibility between models and applications. EBUS, endobronchial 
ultrasound.
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methodology and applications, as well as the advantages and 
limitations specific to each preclinical model and provides an 
overall summary of these observations (Figure 3 and Table 3). 

Cell lines are easy and fast to culture, making them 
the first choice for large-scale studies, but the lack of 
heterogeneity and cell-cell interactions within a 3D 
environment limits the translational potential of findings 
from cell line studies. This limitation has been in part 
offset by culturing cells as 3D spheroids or in 3D on-
chip environments (40). Compared to cell lines, PDX 

models retain tumor heterogeneity and the in-situ tumor 
microenvironment, but are more time-consuming and 
expensive, therefore hampering large-scale experiments. 
Organoids on the other hand, are established and grown 
in a 3D environment within a comparatively short time 
frame and have the potential to be co-cultured with 
other cell types of interest. While it takes 3–6 months to 
establish a PDX model, LCO generation form the same 
tumor specimen can be accomplished in as little as 4 weeks 
(118,119,123), and may therefore have the potential to 

Table 3 Summary of the readouts, advantages and limitations of the available lung cancer preclinical models

Lung cancer 
preclinical model

Readouts Advantage Disadvantage

Cell lines Growth/metabolic assays Ease and low cost of culture and scale-up Lack of clonal heterogeneity

2D Migration Compatible with screening applications Poor representation of cell-cell and cell-
substrate interactions in patient tumor

Marker expression Unlimited passaging Possible changes in marker expression 
after long-term culture

Multi-omics profiling Clonal homogeneity 

Tumor cell killing Well characterized

3D invasion Easy transferability among laboratories

Ease of genetic manipulation (e.g., CRISPR)

Co-cultures of specific cell types of interest 
possible

PDXs Tumor volume In vivo drug response assessment mimicking 
clinical situation 

Long-term lines

Metastases Mouse or humanized tumor microenvironment Labor intensive and costly to use or 
maintain

Histology Humanized mice difficult to establish

Omics Difficulty to scale up (low throughput)

Possible genetic drift after numerous 
passages

LCOs Growth/metabolic assays Maintenance of clonal heterogeneity Difficulties with culture initiation and long-
term maintenance

Histology Model closest to patient tumor Scale-up more cumbersome than cell lines

Multi-omics profiling Genetic manipulations are possible Lack of robust co-culture strategies for 
tumor epithelial and stromal cells

Tumor cell killing Large number of passages (case dependent) Requirement for costly and non-
standardized culture ingredients

3D invasion Co-cultures between specific cell types of 
interest possible

Immune cell recruitment 
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inform clinical decisions during the patient’s lifetime. 
Moreover, cell lines and organoids allow gain- and loss-of-
function genetic manipulations to study genes of interest, 
which are technically much more challenging to perform 
in PDXs. However, among all the patient-derived cancer 
models, PDXs may best recapitulate tumor biology and 
microenvironment, especially when using orthotopic 
implantation or humanized mice for engraftment. PDXs 
also have the advantage over other models in drug response 
studies, as they allow tumor size measurements and toxicity 
examinations in animals. Patient-matched PDXs with co-
engrafted stromal and immune cells from the tumor donors 
may provide a better option for clinical decision making in 
precision medicine. 

While there is  no ideal  model for lung cancer 
research, study design must consider all the advantages 
and disadvantages of different models, as well as the 
compatibility with different experiments, before selecting 
one to answer relevant biological questions. 
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