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Introduction

Human body  is inhabited by trillions of microbes (i.e., 
bacteria, archaea, fungi, protists, and viruses) that are 
increasingly considered critical to human health (1,2). 
Symbiotic communities in our bodies are involved 
in degradation of nutrients, fight against invasion by 
xenobiotics, elimination of pathogens, and maturation of 
our immune system (3). Restrained by the development of 
experimental methods and technology, our knowledge of 

this vast microbiome seems to be very limited previously. 
With the development and spread of  sequencing 
technology, we have gained a deep understanding of 
the human microbiome; thus, our understanding of 
the role of microbiome in human health and disease 
has greatly increased (4,5). On the basis of the key 
features of the microbiome including microbial diversity, 
relative abundance, and microbial gene richness, human 
microbiome project consortium studies have demonstrated 
that healthy individuals have high bacterial diversity and 
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distinct individual variability at the species level (6,7). 
Recent studies have illustrated complex interaction between 
the human microbiome and different disease statuses, 
including cancers (8-11). For example, Helicobacter pylori, a 
common Proteobacteria residing in the upper gastrointestinal 
tract, significantly increases the risk of gastric cancer 
and pancreatic carcinogenesis (12,13). Furthermore, 
Enterotoxigenic Bacteroides fragilis, as one of the most 
prevalent pathobionts detected in colorectal cancer patients, 
has been shown to induce murine colon tumorigenesis 
by generating DNA mutagens, such as the genotoxin, 
superoxide, and hydrogen peroxide (14). In addition to the 
studies that focus on single pathogenic species, increasing 
studies have identified changes in the composition of 
microbiota in various anatomic sites associated with 
carcinogenesis (15). Furthermore, hard evidence suggests 
that physiological and environmental factors including 
diet, smoking, alcohol consumption, and air pollution 
significantly alter the composition of microbiota in various 
anatomic sites (16). These factors are often associated with 
carcinogenesis. Thus, extensive studies are required to 
further identify the link between microbiota and cancer 
development. Lung cancer, as the leading cause of cancer-
related deaths worldwide in men and women, shows an 
increase in incidence in developing countries (17). It has 
a grim prognosis, that is, over half of people diagnosed 
with lung cancer die within one year of diagnosis, and 
the five-year survival rate is less than 18% (18). The two 
main histological groups of lung cancer are small cell lung 
carcinoma (SCLC, 15% of all lung cancers) and non-small 
cell lung carcinoma (NSCLC, 85% of all lung cancers). 
NSCLC is further classified into squamous cell carcinoma, 
adenocarcinoma, and large cell carcinoma (19). Although 
well characterized in etiology, morphology, and intrinsic 
molecular character, little is known about the relationship 
of lung cancer with the lung microbiota. In this review, we 
mainly summarize the current research progress of the lung 
microbiota and the role of lung microbiome in various lung 
diseases and other related diseases, especially in lung cancer. 
In addition, we focus on the change in lung microbiome 
and the potential pathogenic mechanisms to provide a 
theoretical basis for treating this deadly disease.

Lung microbiota in healthy humans and lung 
diseases

Although lungs are connected with outside air, the lungs 
of healthy people were even previously regarded as sterile 

for a long time. Recently, a great number of studies 
confirm the presence of lung microbiota in healthy people. 
Culture-independent molecular techniques were used in 
previous studies to analyze the most common bacterial 
phyla including Bacteroidetes, Firmicutes, and Proteobacteria, 
and the prominent genera include Prevotella, Veillonella, 
and Streptococcus (20-23). These genera are also detected in 
oral samples. Furthermore, lungs contain specific bacteria 
such as Enterobacteriaceae, Haemophilus, Methylobacterium, 
Ralstonia, and Tropheryma species (21,24). In healthy lungs, 
microbial density is low, containing 103 cells/g to 105 cells/g  
of tissue (for comparison, intestinal microbiota reaches a 
density of 1011 to 1012 cells/g) (25,26). The composition 
of lung microbiota is determined by the balance between 
microbial immigration from the upper respiratory tract 
and microbe elimination (e.g., by coughing or immune 
defenses), with relatively few contributions from regional 
growth of the microbes themselves (27-29). Microbial 
immigration from the upper respiratory tract occurs mainly 
through microaspiration. This view can be supported by the 
high similarity between the lower airway and oropharynx 
microbiota rather than nasopharynx. Microaspiration is a 
passive process involving the oral and pharyngeal muscles; it 
mainly occurs during sleep (8). Nevertheless, a study using 
16S rRNA gene sequencing shows similarity of the lung 
microbiota to the oropharynx and nasopharynx microbiota 
in young children (23). This finding might be due to the 
different anatomical structure of upper respiratory tract 
in children and adults. The balance between microbial 
immigration (e.g., via microaspiration) and microbial 
elimination (e.g., mucociliary clearance, cough, and host 
immune defenses) determines the composition of the lung 
microbiota. 

Furthermore, another layer of complexity is added by the 
impact of environmental conditions (e.g., pH, temperature, 
nutr ient ,  oxygen tension,  and act ivat ion of  host 
inflammatory cells) on this process. Thus, the geographical, 
physiological, and immunological diversities also shape 
the composition of the lung microbiota (30,31). Recent 
studies have indicated that the atmospheric concentration 
(µg/m3) of particulate matter with diameters of 10 and 2.5 
micrometers (PM10 and PM2.5) might affect the lung 
microbiota and respiratory functions (32-34). In addition, 
household air pollution plays a role in the composition of 
lung microbiome (35,36). Smoking, as the risk factor for 
lung diseases, has been reported to alter microbial diversities 
and communities in the lower respiratory tract of mice 
and human trials (37,38). Antibiotic is another important 
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factor influencing lung microbiota; it has attracted a great 
deal of attention in recent years. However, the influence 
of antibiotics on microbiota is mainly focused on intestinal 
trials; less is known about the influence on lung microbiome 
composition (39-41). A recent study has shown that after 
one year of azithromycin treatment, bacterial diversity 
decreased in patients with asthma (42). Similarly, treatment 
with azithromycin reduced alpha diversity in patients with 
chronic obstructive pulmonary disease (COPD), but did not 
change the total bacterial burden (43). 

In patients with lung disease, the balance between 
immigration and elimination is disturbed. Thus, the lung 
microbiota is altered, the abundance of symbiotic bacteria 
is decreased, and pathogenic bacteria predominate. This 
change leads to a decrease in diversity of  lung microbiota 
and is associated with the progression of chronic lung 
diseases, such as COPD (44-54), cystic fibrosis (55-58), 
asthma (59-62), and idiopathic pulmonary fibrosis (63-65) 
(Table 1).

In summary, homeostasis of the lung microbiota is 
associated with the balance between immune defense of 
pathogens and immune tolerance of the commensals. 
On one hand, host lungs have established three major 
pathways to defend against the invasion of pathogens. First, 
Mucus, mainly secreted by goblet and club cells, provides 
an effective defense against epithelial injury and limits 
the migration of pathogens to epithelial cells. Thus, the 
systematic spread of microbes in the body is prevented; 
inflammation is also prevented, and homeostasis of the 
microbiota and host is protected (66,67). Second, alveolar 
surfactant containing sIgA covers the surface of lung 
alveolar epithelial cells and participates in lung innate 
immunity (68). Finally, the epithelial cell layer is not only 
a structural barrier, but also a component of the innate 
host defense. Epithelial cells express several pattern 
recognition receptors (PRRs) and secrete antimicrobial 
molecules and mucins to defend against invading 
pathogens (69). The PRRs, including toll-like receptor 
(TLR) and nucleotide-binding oligomerization domain-
like receptors can prevent the overload of pathogens or 
metabolites by identifying pathogen-associated molecular 
patterns or cell damage-associated molecular patterns 
(70,71). Then, the pathogens are further eliminated by 
activating the downstream inflammatory signaling pathway 
(72). On the other hand, immune tolerance of commensals 
is regulated by anti-inflammatory macrophages in alveoli 
by inhibiting inflammatory pathways and adaptive immune 
responses (73,74).

Relationship between gut microbiome and lung 
microbiome

Recently, many studies have begun to focus on the two-way 
manner between gut and lungs, which is known as the “gut–
lung axis” (75). This theory is based on “gut–lymph” theory 
of Samuelson et al. (76). According to the theory, many 
macrophages and other immune cells are present in the 
intestinal submucosa or the mesenteric lymph nodes that 
contain many translocating bacteria. If they are not cleared 
by the first line of defense, then the surviving bacteria, cell 
wall fragments, or protein fragments of dead bacteria would 
escape along with the cytokines and chemokines produced 
in the intestine and travel along the mesenteric lymphatic 
system to the cisterna chyli and then into the circulatory 
system. One way is access to pulmonary circulation, leading 
to local activation of dendritic cells and macrophages 
and the initiation and differentiation of T cells. Another 
way is activation of immune cells, which affect the lung 
area through their own migration, in the first contact 
with the antigen in the intestinal mucosa. Therefore, gut 
microbiomes influence the lung microbiome partly through 
inhalations of the gastroesophageal content, swallowing of 
the sputum, and most importantly through modulation of 
host immune.

Studies have shown that cigarette smoke, as a crucial risk 
of COPD, can also change the composition of intestinal 
microbiota and reduce the diversity of intestinal bacteria (77),  
and the change in composition of microbiota is closely 
related to many inflammatory diseases,  including 
intestinal inflammation and inflammatory bowel disease 
(IBD) (75,78,79). Many respiratory infections are often 
accompanied by gastrointestinal symptoms given that the 
“gut–lung axis” is bidirectional (80). This finding has also 
been demonstrated in animal models with respiratory 
infection (81,82). However, direct evidence for the influence 
of lung microbiota and its products and their circulation is 
lacking. An animal experiment showed that nonabsorbable 
tracer deposited into the nasal cavity can be found in the 
gastrointestinal tract subsequently (83). Further research is 
needed to validate and extend these findings.

Microbiome and lung cancer

Oral microbiome and lung cancer

The oral microbiome is highly correlated with the lung 
microbiome because lungs are directly connected with 
the oral cavity. More recently, the association of oral 
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Table 1 Current findings on relationship between lung microbiota and non‑oncology lung

Disease Reference Sample Method Significant outcome

COPD Erb-Downward JR 
et al. (44)

BALF/lung 
tissue

16S rRNA significant abundance of Pseudomonas and Haemophilus

Hilty et al. (45) Oropharynx/
Bronchoscopy

16S rRNA significant increases in Pathogenic Proteobacteria, particularly 
Haemophilus spp.

Kim et al. (46) Lung tissue 16S rRNA significant increases in Firmicutes, particularly Lactobacillales; 
Ochrobactrum was only found in the COPD

Sze et al. (47) Lung tissue 16S rRNA significant abundance of Firmicutes, particularly Lactobacillales

Pragman et al. 
(48)

BALF 16S rRNA The dominant phyla: Actinobacteria and Proteobacteria in moderate 
COPD; Actinobacteria and Firmicutes in severe COPD; Increased the 
genus in Nocardioides and Balneimonas; Decreased the genus in 
Humicoccus and Thermoactinomyces

Millares et al. (49) Sputum 16S rRNA/
bacterial culture 

The dominant phyla: Proteobacteria and Firmicutes, Actinobacteria, 
Bacteroidetes and Fusobacteria; Increased the genus in Streptococcus, 
Pseudomonas, Moraxella, Haemophilus, Neisseria, Achromobacter and 
Corynebacterium

Garcia-Nuñez  
et al. (50)

Sputum 16S rRNA/
bacterial culture

The dominant phyla: Proteobacteria and Firmicutes, followed by 
Actinobacteria; relative abundance of the genera Rothia, Streptococcus, 
and Veillonella

Lee et al. (51) Sputum 16S rRNA The dominant phyla: Proteobacteria, Bacteroidetes and Firmicutes; 
more abundant of the genera Haemophilus, Neisseria, Fusobacterium, 
Prevotella, and Porphyromonas in severe COPD, more abundant of the 
genera Propionibacterium, Bacillus, Pseudomonas, Escherichia and 
Porphyromonas in moderate COPD

Mayhew et al. (52) Sputum 16S rRNA The dominant phyla: Firmicutes, Proteobacteria and Bacteroidetes; 
the most abundant genera: Veillonella, Haemophilus, Streptococcus, 
Prevotella and Moraxella 

Jubinville et al. 
(53)

Sputum 16S rRNA The dominant phyla: Firmicutes, Proteobacteria and Bacteroidetes; the 
dominant genera: Streptococcus, Prevotella, Moraxella and Veillonella

Leitao Filho et al. 
(54)

Sputum 16S rRNA The dominant phyla: Firmicutes, Actinobacteria, Bacteroidetes, 
Proteobacteria and Fusobacteria; the dominant genera: Streptococcus, 
Prevotella, Haemophilus, Rothia, Veillonella and Pseudomonas

CF Feigelman et al. 
(55)

Sputum 16S rRNA Increased abundance of Pseudomonas, Staphylococcus, 
Stenotrophomonas, and Achromobacter

Frayman et al. (56) BALF 16S rRNA The dominant phyla: Firmicutes, Proteobacteria, Actinobacteria, 
Bacteroidetes and Fusobacteria

Laguna et al. (57) BALF 16S rRNA Increased abundance of Pseudomonas, Staphylococcus, Haemophilus, 
Stenotrophomonas and Achromobacter

Carmody et al. 
(58)

Sputum 16S rRNA Increased abundance of Streptococcus, Fusobacterium, Veillonella, 
Prevotella, Gemella and Rothia

Table 1 (continued)
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microbiome with lung cancer has received considerable 
attention. Several prospective cohorts have consistently 
shown that periodontal diseases, known to alter the oral 
microbiota, are associated with increased lung cancer risk 
after controlling potential confounding factors including 
smoking (84-88). 16S rRNA gene sequencing results of 
salivary microbiome suggest an elevated abundance of 
Capnocytophaga and Veillonella with a reduced number 
of Neisseria (89). Another study in nonsmoking female 
with lung cancer indicates that genera Blastomonas 
and Sphingomonas were significantly increased in the 
oral microbiota of patients with lung cancer, whereas 
Acinetobacter and Streptococcus were higher in controls (90). 
Although the association between periodontal disease and 
lung cancer is generally considered strong, the causality 
remains a large problem, and further research is needed to 
evaluate potential mechanisms.

Lung microbiome and lung cancer

Studies have shown that patients with lung cancer may 
have similar lung microecology. A summary overview of 
the relationship between lung microbiota and lung cancer 

is shown in Table 2 (30,91-102). Hasegawa et al. collected 
intraoperative bronchial fluids using a microsampling 
probe from nine subjects with pulmonary carcinoma and 
cultured anaerobically on blood agar plates. Predominant 
isolates from intraoperative bronchial fluids are commonly 
indigenous to the oral cavity, namely, Streptococcus, 
Veillonella, Gemella, Porphyromonas, Olsenella, and Eikenella. 
These findings indicate that intraoperative bronchial 
fluids contain bacteria probably derived from the oral 
microbiota (93). The result of another study on airway 
brushing samples showed that the prominent phyla or 
genera were also dominated in oral samples of patients with 
lung cancer (94). Simon et al. collected sputum samples 
from 10 patients with possible LC, four of which were 
eventually diagnosed with LC (LC+), and six had no LC 
after one year (LC−). Among the seven bacterial species 
found in all samples, Streptococcus viridans was significantly 
higher in LC+. Among the five species having significantly 
higher abundances in LC+, Granulicatella adiacens showed 
the highest level of abundance change. Moreover, G. 
adiacens abundance was correlated with six other bacterial 
species only in LC+ samples, namely, Enterococcus sp. 
130, Streptococcus intermedius, Escherichia coli, S. viridans, 

Table 1 (continued)

Disease Reference Sample Method Significant outcome

Asthma Durack et al. (59) Bronchoscopy 16S rRNA Increased abundance of Haemophilus, Neisseria, Fusobacterium, 
Porphyromonas and Sphingomonodaceae; decreased in 
Mogibacteriaceae and Lactobacillales

Teo et al. (60) NP 16S rRNA The dominant phyla: Proteobacteria, Firmicutes, Actinobacteria, 
Bacteroidetes and Fusobacteria; the dominant genera: Moraxella, 
Streptococcus, Corynebacterium, Staphylococcus, Haemophilus and 
Alloiococcus

Huang et al. (61) Bronchoscopy 16S rRNA The dominant phyla: Bacteroidetes and Firmicutes; Increased abundance 
of Actinobacteria in severe asthma

Marri et al. (62) Sputum 16S rRNA The dominant phyla: Firmicutes, Proteobacteria, Actinobacteria, 
Fusobacterium and Bacteroidetes

IPF Molyneaux et al. 
(63)

BALF 16S rRNA The dominant phyla: Firmicutes, Proteobacteria, Bacteroidetes 
and Actinobacteria; Increased abundance of Campylobacter and 
Stenotrophomonas in AE-IPF; Veillonella in the stable IPF

Han et al. (64) BALF 16S rRNA Increased abundance of Staphylococcus and Streptococcus

Molyneaux et al. 
(65)

BALF 16S rRNA Increased abundance of Haemophilus, Streptococcus, Neisseria and 
Veillonella 

COPD, chronic obstructive pulmonary disease; CF, cystic fibrosis; IPF, idiopathic pulmonary fibrosis; BALF, bronchoalveolar lavage fluid; 
NP, nasopharyngeal.
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Table 2 Current findings on relationship between lung microbiota and lung cancer

Reference
Study 
participants

Sample Method Significant outcome

Cameron et al. (91) LC+ [4], LC− [6] Sputum 16S rRNA Increased G. adiacens; Enterococcus sp. 130, 
Streptococcus intermedius, Escherichia coli, 
Streptococcus viridans, Acinetobacter junii, and 
Streptococcus sp. 6. 

Lee et al. (92) LC+ [20] Benign 
diseases [8]

BALF 16S rRNA Increased two phyla (Firmicutes and TM7) and four 
genera (Veillonella, Megasphaera, Atopobium, and 
Selenomonas)

Hasegawa et al. 
(93)

LC+ [10] BALF 16S rRNA Dominated by Streptococcus, Veillonella, Gemella, 
Porphyromonas, Olsenella and Eikenella 

Yu et al. (30) LC [165] Lung tissue 16S rRNA Dominated by Proteobacteria; Increased the genus 
Thermus in advanced stage patients; Increased 
Legionella in develop metastases patients

Liu et al. (94) LC+ [24] healthy 
control [18]

Bronchoscopy 16S rRNA Decreases in microbial diversity; Increased the genus 
Streptococcus and Neisseria; Decreases Staphylococcus 
and Dialister gradually from healthy to noncancerous to 
cancerous site 

Zhuang et al. (95) LC [30] healthy 
control [30]

Faeces 16S rRNA The composition (beta diversity) differed significantly 
between patients and controls; Decreases the bacterial 
phylum Actinobacteria and genus Bifidobacterium; 
Increased Enterococcus

Zhang et al. (96) NSCLC [39], 
healthy control 
[20]

Saliva 16S rRNA Increased the phylum Firmicutes and its two genera 
Veillonella and Streptococcus; Decreases the relative 
abundances of Fusobacterium, Prevotella, Bacteroides 
and Faecalibacterium

Greathouse et al. 
(97)

LC+ [143], LC− 
[33]

Lung tissue 16S rRNA Increase in richness and alpha diversity; Increased 
the phylum Proteobacteria and decreased Firmicutes; 
Increased the abundance of Acidovorax and Klebsiella in 
smokers

Apopa et al. (98) LUAD [11], LUSC 
[8] adjacent 
normal samples 
[8]

Lung tissue 16S rRNA Increased four phyla (Proteobacteria, Bacteroidetes, 
Actinobacteria, and Firmicutes); Increased phylum 
Cyanobacteria in LUAD samples

Peters et al.
(99)

NSCLC [19] Lung tissue 16S rRNA Tumor tissue had lower richness and diversity; Increased 
the family Veillonellaceae; Decreases the genus 
Cloacibacterium, and family Erysipelotrichaceae

Tsay et al.
(100)

LC+ (39), disease 
control (36), 
healthy control 
[10]

Lower airway 
samples

16S rRNA Increased Prevotella, Streptococcus and Veillonella

Hosgood et al. 
(101)

Never smoking 
female LC [8], 
never smoking 
female controls 
[8]

Sputum/buccal 
samples

16S rRNA Increased Granulicatella, Abiotrophia and Streptococcus 
in sputum; Increased the Bacilli species (Streptococcus 
infantis and Streptococcus anginosus) in sputum

Table 2 (continued)
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Acinetobacter junii, and Streptococcus sp. 6 that could be related 
to LC stage. The results in this study showed that the 
spontaneous sputum would be a viable source of bacterial 
biomarkers for LC status and stage (91). Another study on 
sputum samples from a nonsmoking female patient with 
LC showed the enrichment of Granulicatella, Abiotrophia, 
and Streptococcus (92). Lee et al. studied bronchoalveolar 
lavage fluid from 28 patients and found that Acteroidetes, 
Firmicutes, and Proteobacteria were the most common phyla, 
and Prevotella, Streptococcus, and Neisseria were the most 
common genera in both groups. The relative abundance of 
two phyla (Firmicutes and TM7) and four genera (Veillonella, 
Megasphaera, Atopobium, and Selenomonas) were significantly 
increased in patients with lung cancer. Furthermore, the 
combination of the two genera (Veillonella and Megasphaera) 
showed a higher receiver operating characteristic value than 
the individual genus in predicting lung cancer. Thus, this 
combination could be used as biomarker for lung cancer. 
Another noteworthy finding was that smoking patients with 
lung cancer have a significantly higher ratio of Firmicutes 
to Bacteroidetes than nonsmoking patients (92). A similar 
result is also shown in a study of lung tissue samples with 
COPD (47). In addition, an increase in the phylum TM7 
was reported in COPD (48). These results further support 
the view about the strong relationship between COPD and 
lung cancer, as indicated in other studies (103,104). 

Most previous studies on lung microbiota used oral, 
sputum, or bronchoscopic brushing samples. A common 
concern with these samples is that they may be contaminated 
by the upper respiratory or oral microbiota. Some studies 
have suggested that the bacteria in lung carcinogenesis 
may be associated with aspiration of oral or pharyngeal 
bacteria. However, a research on 165 nonmalignant lung 
tissue samples from cancer patients showed that the lung 
microbiota has distinct features that differ from those of 
the oral cavity and other body sites. In fact, it is dominated 
by Proteobacteria. Similar results from other studies show 
the domination of Proteobacteria in lung tissue samples with 

lung cancer (97,98,102). Furthermore, the genus Thermus is 
more abundant in tissue from advanced stage patients, and 
Legionella is high in patients with metastases (30). Moreover, 
the lung microbiota is affected by exposure to air pollution 
and tobacco smoking. 

In summary, patients with lung cancer show changes 
in the relative abundance of multiple genera. Consistent 
conclusions from all recent studies are limited due to the 
small sample size of most studies and the heterogeneity 
of lung cancer. However, most studies indicate that 
Streptococcus and Proteobacteria may be the key bacteria of 
lung cancer. Nevertheless, further large-scale studies are 
needed to verify certain microbial biomarkers for patients 
with lung cancer.

Possible mechanisms mediating lung microbiota and lung 
cancer 

Dysbiosis of the microbiome is mainly manifested by the 
decrease in symbiotic bacteria and the increase in pathogenic 
bacteria, and then inducement of carcinogenesis at multiple 
levels, including metabolism alteration, inflammation, 
and immune response (105,106). Present studies on the 
mechanisms of microbiota and cancer are mainly focused 
on intestinal flora and colon cancer (107-109). When 
dysregulated, the intestinal microbiota can contribute to 
colorectal cancer development through the modulation 
of immune function and the production of microbial-
derived metabolites (110). The increase in pathogenic 
bacteria can lead to chronic inflammation through the 
persistent generation of inflammatory mediators, thereby 
affecting cell apoptosis and increasing mutations. Moreover, 
the metabolites of bacteria, such as reactive oxygen and 
nitrogen, through direct DNA damage or modification of 
cellular signaling generate a pro-carcinogenic environment. 
Bacteria influence cellular signaling and/or induce mucosal 
inflammation to initiate or promote colon tumorigenesis 
through producing a variety of oncogenic toxins to directly 

Table 2 (continued)

Reference
Study 
participants

Sample Method Significant outcome

Bingula et al. (102) Forty NSCLC Saliva/faeces/BALF 16S rRNA 4 main phyla are found in both lung and intestinal 
microbiota (Firmicutes, Bacteroidetes, Actinobacteria, 
and Proteobacteria)

BALF, bronchoalveolar lavage fluid.
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damage DNA(111). 
However, studies on the mechanism of lung microbiota 

and lung cancer are few. Great effort is exerted to identify 
and characterize a potential causal relationship from the 
lung cancer and lung microbe interaction. 

A large cohort study by Boursi et al. demonstrated 
that recurrent exposure to certain antibiotics (penicillin, 
cephalosporins, or macrolides) may increase lung cancer 
risk (112). Antibiotic-induced dysbiosis not only alter 
bacterial abundance, composition, and diversity in animal 
models, but also accelerate Lewis LC that progressed on 
the host side (113). The dysbiosis of lung microbiota may 
promote the development of lung cancer by releasing 
cancer-promoting bacterial metabolites and inducting host 
inflammatory pathways (114). The possible mechanisms 
mediating lung microbiota and lung cancer are illustrated in 
Figure 1. 

Metabolism
Recent studies have implicated that the metabolites of 
bacteria may be involved in the development of lung 
cancer. Cytolethal distending toxin (CDT) as a bacterial 
genotoxin produced by variety of gram-negative bacteria, 
such as Actinobacillus, can induce apoptosis in human lung 
adenocarcinoma A549 cell line (115). G. adiacens was found 
to be associated with lung cancer. In addition, the research 
on functional capacity demonstrated that G. adiacens was 
involved in the metabolism of polyamine (91). Interestingly, 
elevated levels of polyamines, such as putrescine and 
gamma-aminobutyric acid, have been associated with 
a range of cancers including lung malignancies (116). 
Apopa et al. found that the abundance of Cyanobacteria 
was significantly increased in lung adenocarcinoma, and 
the functional analysis suggested that the Cyanobacteria 
toxin (i.e., microcystin) might be related to the increase 
in procyclic acidic repetitive protein 1 (PARP1), thereby 
enhancing inflammation and leading to cancer. The result 
was further confirmed in microcystin-challenged lung 
adenocarcinoma (A427) cell lines (98).

In addition, some bacteria in the intestinal microbiome 
can increase the bioavailability of anticancer drugs. Niu 
suggested that Bacteroidaceae and Prevotellaceae contain 
species capable of hydrolyzing ginsenosides present in red 
ginseng extract (RGE), enhancing the effect of RGE in the 
prevention and treatment of lung cancer (117). This finding 
indicates that the decrease in symbiotic bacteria could 
accelerate LC progression. 

Inf﻿lammatory pathways and immune response 
In recent years, considerable studies have shown that chronic 
inflammation plays an important role in the development 
of several forms of cancer, including lung cancer. Dysbiosis 
of the microbiota can activate the inflammatory pathway 
to trigger the proliferation and survival of epithelial cells 
under certain conditions, promoting the development 
of tumors. TLR4, as a member of pattern recognition 
receptor, initiates natural immunity in the early stage of 
pathogen invasion. Increasing evidence shows that it plays a 
crucial role in the development of tumor microenvironment 
and has been increasingly investigated. TLRs promote 
carcinogenic effects by activating nuclear factor κB (NF-
κB) pathway, releasing inflammatory factor, and activating 
transcription 3 (STAT3) (118). TLR4 is expressed more 
strongly in lung cancer tissue than in paracancer tissue (119).

Ochoa et al. found that exposure of the airway to smoke 
particulates and nontypeable Haemophilus influenzae (NTHi) 
promoted lung cancer cell proliferation by release of IL-6 
and TNF, which further activated the STAT3 and NF-
kB pathways in airway epithelium (120). Another study 
demonstrated that IL-6 blockade significantly inhibited lung 
cancer promotion, tumor cell intrinsic STAT3 activation, 
tumor cell proliferation, and angiogenesis markers (121). 

In addition, Th17 cell-mediated inflammation has been 
identified to play a critical role in lung tumorigenesis (122). 
Jungnickel et al. indicated that the epithelial cytokine IL-
17C mediates the tumor-promoting effect of bacteria, 
such as NTHi, through neutrophilic inflammation (123). 
Recently, growing awareness of the importance of NTHi 
in the pathophysiology of COPD has been observed, 
and COPD-like airway inflammation induced by NTHi 
provides a tumor microenvironment that favors lung tumor 
promotion and progression (124-126). Thus, NTHi may 
act as a bridge between COPD and lung cancer.

Furthermore, accumulating evidence indicated that 
upregulation of the PI3K pathway played a central role 
in the cell proliferation, survival, and tissue invasion of 
early lung cancer (127). Tsay et al. reported that the oral 
taxa (Streptococcus and Veillonella) enriched in the lower 
airways of patients with lung cancer were associated with 
upregulation of the ERK and PI3K signaling pathways, 
and the same signaling pathways were upregulated in vitro 
exposure of airway epithelial cells to Veillonella, Prevotella, 
and Streptococcus (128). These studies preliminarily indicated 
that pulmonary bacteria up-regulate the expression of 
inflammatory mediators and cytokines by acting on 
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Figure 1 Possible mechanisms mediating lung microbiota and lung cancer. The commensal microbiota contributes to immune tolerance 
through decreasing lung inflammation and dendritic cell recruitment. Macrophages and T cells respond to microbial colonization and 
prevent the overload of pathogens or metabolites (left panel). When the balance is disturbed, pathogens or metabolites up-regulate 
the expression of inflammatory mediators and cytokines (e.g., IL-1, IL-23, TNF, and IL-17) by acting on MAMP. These inflammatory 
mediators or cytokines trigger downstream critical signaling pathways (e.g., STAT3 and NF-kB pathways and ERK and PI3K pathways), 
which promote the carcinogenesis of the host cells.

microbe-associated molecular pattern recognition receptors 
(MAMP), thereby affecting the development of lung cancer.

Application of lung microbiome in clinical trial

Most experimental studies analyzing the application of lung 
microbiota in the clinical therapy mainly focused on animal 
models. The relevant content theme has been covered 
in several reviews (11,129,130). Most commonly studied 
microorganisms in the context of lung disease are known 
probiotics, such as Lactobacillus and Bifidobacterium. Their 
beneficial role in animal models of lung diseases has been 
well demonstrated (130). For instance, orally or intranasal 
administered Lactobacillus and Bifidobacterium were shown to 
protect mice against lung infection by augmenting antibody 
production, enhancing natural killer cell activity, and IFN-γ 
production, as well as increasing secretion of IL-10. In 
addition, Lactobacillus and Bifidobacterium were shown to 
confer beneficial effects on allergic airway inflammation by 

inducing Treg cells and TH1 cells. Currently, experimental 
studies on the application of lung microbiome in lung 
cancer are relatively l imited. Orally administered 
Lactobacillus acidophilus on mice lung cancer model was 
shown to reduce tumor size and increase survival rate after 
receiving cisplatin treatment (131). Moreover, administered 
Enterococcus hirae and Barnesiella intestinihominis in 
combination with chemoimmunotherapy can significantly 
improve efficacy in patients with advanced lung cancer (132).

Conclusions

In summary, accumulating evidence for specific bacteria as 
biomarkers of lung cancer presence is found. However, the 
precise mechanism of lung microbiota on the regulation 
of lung cancer is still partly unclear. Future research of the 
causal role of these bacteria in lung carcinogenesis will be 
beneficial for our understanding of the interactions between 
the lung microbiota and lung function, which is also 
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valuable in ultimately providing therapeutic targets for lung 
cancer prevention and therapy.
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