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Background: Pembrolizumab is a standard of care as first line palliative therapy in PD-L1 overexpressing 
(≥50%) non-small cell lung cancer (NSCLC). This study aimed at the identification of KRAS and TP53-
defined mutational subgroups in the PD-L1 high population to distinguish long-term responders from those 
with limited benefit.
Methods: In this retrospective, observational study, patients from 4 certified lung cancer centers in 
Berlin, Germany, having received pembrolizumab monotherapy as first line palliative treatment for lung 
adenocarcinoma (LuAD) from 2017 to 2018, with PD-L1 expression status and targeted NGS data available, 
were evaluated.
Results: A total of 119 patients were included. Rates for KRAS, TP53 and combined mutations were 
52.1%, 47.1% and 21.9%, respectively, with no association given between KRAS and TP53 mutations 
(P=0.24). By trend, PD-L1 expression was higher in KRAS-positive patients (75% vs. 65%, P=0.13). 
Objective response rate (ORR), median progression-free survival (PFS) and overall survival (OS) in the 
KRASG12C group (n=32, 51.6%) were 63.3%, 19.8 months (mo.) and not estimable (NE), respectively. Results 
in KRASother and wild type patients were similar and by far lower (42.7%, P=0.06; 6.2 mo., P<0.001; 23.4 
mo., P=0.08). TP53 mutations alone had no impact on response and survival. However, KRASG12C/TP53 
co-mutations (n=12) defined a subset of long-term responders (ORR 100.0%, PFS 33.3 mo., OS NE). In 
contrast, patients with KRASother/TP53 mutations showed a dismal prognosis (ORR 27.3%, P=0.002; PFS 3.9 
mo., P=0.001, OS 9.7 mo., P=0.02).
Conclusions: A comprehensive assessment of KRAS subtypes and TP53 mutations allows a highly 
relevant prognostic differentiation of patients with metastatic, PD-L1 high LuAD treated upfront with 
pembrolizumab.
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Introduction

Pembrolizumab monotherapy is a highly effective standard-
of-care in metastatic, programmed death ligand 1 positive 
(PD-L1 ≥50%) non-small cell lung cancer (NSCLC) (1,2). 
However, predictive biomarkers distinguishing long-term 
responders to immune checkpoint inhibitors (ICI) from 
those experiencing no or only a limited benefit are still an 
unmet medical need. 

Assuming a positive correlation of tumor neoantigens 
and the respective immune host response, assessment of 
tumor mutational burden (TMB) may serve as a predictor to 
ICI treatment (3-6), but several constraints have prevented 
an extensive integration into daily clinical practice yet. 
Compared to next-generation sequencing (NGS)-based 
gene panel tests, TMB testing is substantially more tissue-, 
time- and cost-consuming and harmonization of methods 
and cut-offs used is lacking (5,7-10). Finally, prospective 
clinical trials using upfront immuno-oncologic approaches 
in metastatic NSCLC have not unanimously demonstrated 
a predictive value for TMB (11,12).

KRAS mutations account for approximately 30% of 
driver mutations in lung adenocarcinoma (LuAD) (13,14), 
but are just rarely identified in squamous carcinoma (15).  
No specific therapies have been established yet and 
prognosis, in general, is poor (16). They are clearly tobacco-
related and associated to a higher PD-L1 expression (17) 
as well as TMB (18). As lung cancer is characterized by a 
high average number of somatic mutations in general (19),  
co-occurring mutations like TP53 became the focus 
of attention. In contrast to TMB, both are routinely 
investigated in NGS assays and, besides distinguishing 
distinct molecular subgroups, might identify responders 
to ICI (20,21). Hence, our retrospective study aimed at 
the identification of KRAS- and TP53-defined prognostic 
subsets of PD-L1 positive (≥50%) LuAD treated with 
pembrolizumab monotherapy as first line palliative 
treatment. We present the following article in accordance 
with the REMARK reporting checklist (available at http://
dx.doi.org/10.21037/tlcr-20-958).

Methods

Study population

For this retrospective study all patients from four certified 
lung cancer centers in Berlin, Germany, with relapsed or 
metastatic LuAD, without any actionable target mutation 
(ALK or ROS1 rearrangements, BRAFV600E or EGFR 
mutations), with available results for PD-L1 testing and 
NGS panel diagnostics and having received first line 
palliative treatment with pembrolizumab in the period 
between January 2017 and December 2018 were included. 
The contributing centers were: Department of Infectious 
Diseases and Pulmonary Medicine at the Charité – 
Universitätsmedizin Berlin; Department of Pulmonary 
Medicine at the Evangelische Lungenklinik Berlin-Buch; 
Department of Pulmonary Medicine at the HELIOS 
Klinikum Emil-von-Behring, Lungenklinik Heckeshorn 
and the Department of Pulmonary Medicine at the 
Gemeinschaftskrankenhaus Havelhöhe. 

Data collection and endpoints

Patients’ baseline demographics [age, sex, performance 
status (PS), smoking behavior], tumor-specific data [date of 
diagnosis, histology, PD-L1 expression, molecular profiling 
(NGS), initial staging (cTNM), treatments], radiologic 
evaluation and outcome were collected using the respective 
hospital’s tumor registry, site-specific clinical databases and 
individual charts. Follow-up data, when not documented 
in the respective clinical database, were obtained from 
the patients or their primary care physicians to minimize 
missing data. 

Response  was  a s se s sed  accord ing  to  na t iona l  
guidelines (22) using “Response Evaluation Criteria in 
Solid Tumors” (RECIST) version 1.1 (23). PFS was 
defined as the time in months from the date of first dose 
pembrolizumab to the first documented progression 
(RECIST-defined or death), OS as the time in months from 
the first dose pembrolizumab to death from any cause. 
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PD-L1 testing and targeted NGS used to characterize 
KRAS and TP53 mutations

PD-L1 expression was determined as the percentage of 
tumor cells with positive membranous staining using the 
E1L3N (n=80; Cell Signaling, Cambridge, UK) or QR1 
antibody (n=39; Quartett Immunodiagnostics, Berlin, 
Germany). Scoring was determined counting ≥100 tumor 
cells by experienced thoracic pathologists. Multiplex PCR-
based, targeted NGS assays used were the Ion AmpliSeq™ 
Colon and Lung Cancer Panel covering 22 genes (93 
patients; Thermo Fisher Scientific, Waltham, USA) and 
the panel from the German Network Genomic Medicine, 
Cologne, Germany, covering 14 genes (26 patients) (24). 
Mutation status was assessed for TP53 and KRAS hotspot 
regions with focus on non-synonymous variants known or 
predicted to be pathogenic or non-functional.

Statistical analysis

Demographics and disease data were described and 
compared using the Pearson Chi2-test, Fisher’s exact test 
or Mann-Whitney U-test. The Kaplan-Meier method was 
used to estimate median PFS, time to treatment failure 
(TTF) and OS. P values comparing survival curves were 
calculated with log-rank tests. Hazard ratios were calculated 
using Cox proportional hazard regression. Analyses were 
performed using IBM SPSS statistics version 24 (IBM, 
Armonk, NY, USA). A P value <0.05 (two-tailed) was 
defined as statistically significant.

Ethics statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the institutional ethics committee of Charité 
Universitätsmedizin Berlin (approval number EA2/223/18) 
and individual consent for this retrospective analysis was 
waived (patient’s written informed consent was obtained 
within the treatment contract as ICI were administered as 
standard of care).

Results

Baseline characteristics

A total of 153 patients had received pembrolizumab as first 
line palliative treatment from January 2017 until December 
2018. One hundred and nineteen patients with available 

results for PD-L1 testing and targeted NGS assays and with 
LuAD or related histologies were included in this study. 
Median age at the beginning of ICI treatment was 68 years 
(range, 40–86) with a predominance of male patients (n=68, 
57.8%). PS was 0‒1 in 92 patients (77.3%), and 2 and 3 
in 23 (19.4%) and 4 patients (3.4%), respectively. Ninety-
eight patients were active or former smokers (91.6%), 9 
patients had a history of never-smoking (8.4%). LuAD 
was the predominant histology in 95 patients (79.8%), 
adenosquamous carcinoma (ASqC), large cell carcinoma 
(LCC) and a not-otherwise specified (NOS) pattern were 
identified in 11 (9.3%), 1 (0.8) and 12 patients (10.1%), 
respectively. Median PD-L1 expression in the entire cohort 
was 75% (95% CI, 65–75%). Stage at primary diagnosis 
was III in 19 patients (16.0%) and IV in 100 patients 
(84.0%). Ten patients underwent a primary therapy with 
curative intent (8.4%) and received pembrolizumab after 
disease relapse. Rates for adrenal (ADR), brain (BRA), 
liver (HEP) and bone metastases (OSS) at the beginning 
of pembrolizumab were 16.8%, 20.2%, 10.1% and 27.7%, 
respectively. The main characteristics are reported in Table 
1. 

Frequency of KRAS mutations (KRASmut) was 52.1%, 
of whom 51.6% were KRASG12C (Figure 1A). Non-
synonymous TP53 mutations (TP53mut) occurred in 47.1% 
of the patients, 58.9% displayed missense mutations  
(Figure 1B). No association between KRASmut and TP53mut 
was observed (P=0.24). Rates of wild type patients, KRASmut 
or TP53mut alone, and KRAS/TP53 co-mutations were 
22.7%, 30.3%, 25.2% and 21.8%, respectively (Figure 1C).  
By trend, PD-L1 expression was higher in KRASmut 
tumors (75 vs. 65%, P=0.13). Whereas no differences were 
observed among KRAS subgroups, KRASG12C/TP53mut 
tumors more frequently had a PD-L1 expression within 
the highest percentile (≥90%: 41.7% vs. 20.0%, P=0.14). 
Expression levels were similar among TP53 subsets. Apart 
from a trend to a higher rate of current/former smokers 
in KRASmut patients (96.5% vs. 86.0%, P=0.08), clinical 
baseline characteristics were similar across all molecularly 
defined groups.

Treatment characteristics and RECIST-evaluation

All treatment characteristics are listed in Tables 2,3. Median 
follow-up was 26.4 months for the entire cohort. The 
median number of cycles administered, duration of therapy 
and rate of patients still on treatment were 10, 8.2 months 
and 19.3%, respectively. RECIST-based evaluation was 
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Figure 1 Distribution of KRAS mutations (A), TP53 mutations (B) and mutational pattern according to both mutations (C). KRASmut, 
KRAS mutation; KRASwt, KRAS wild type; TP53mut, TP53 mutation; TP53wt, TP 53 wild type.

KRASwt

n=57 (47.9%)

TP53wt

n=63 (52.9%)

KRASmut

n=62 (52.1%)

TP53mut

n=56 (47.1%)

G12C n=32 (51.6%)

G12D n=7 (11.3%)

G12V n=7 (11.3%)

G12A n=5 (8.1%)

G13C n=3 (4.8%)

G13D n=3 (4.8%)

Q61L n=2 (3.2%)

G12F n=1 (1.6%)

Q61H n=1 (1.6%)

G12V+G13D n=1 (1.6%)

Missense mutations n=33 (58.9%)

Nonsense mutations n=11 (19.6%)

Frameshift mutations, insertions, 

deletions n=10 (17.9%)

Splice site n=2 (3.6%)

KRASwt/TP53wt n=27 (22.7%)

KRASmut n=36 (30.3%)

TP53mut n=30 (25.2%)

KRASmut/TP53mut n=26 (21.8%)

A

B

C



743Translational Lung Cancer Research, Vol 10, No 2 February 2021

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(2):737-752 | http://dx.doi.org/10.21037/tlcr-20-958

T
ab

le
 2

 T
re

at
m

en
t 

ch
ar

ac
te

ri
st

ic
s 

an
d 

re
sp

on
se

 a
cc

or
di

ng
 t

o 
R

E
C

IS
T

 1
.1

 f
or

 a
ll 

pa
tie

nt
s 

(le
ft

 c
ol

um
n)

, K
R

A
S-

m
ut

at
io

ns
 (

se
co

nd
 c

ol
um

n 
fr

om
 le

ft
 s

id
e)

, K
R

A
S su

bg
ro

up
s 

(t
hi

rd
 

co
lu

m
n 

fr
om

 le
ft

 s
id

e)
 a

nd
 T

P
53

 m
ut

at
io

ns
 (r

ig
ht

 c
ol

um
n)

Va
ria

bl
e

A
ll 

pa
tie

nt
s 

(n
=

11
9)

K
R

A
S

m
ut

  

(n
=

62
)

K
R

A
S

w
t  

(n
=

57
)

P
 v

al
ue

K
R

A
S

G
12

C
  

(n
=

32
)

K
R

A
S

ot
he

r 
 

(n
=

30
)

P
 v

al
ue

TP
53

m
ut

  

(n
=

56
)

TP
53

w
t  

(n
=

63
)

P
 v

al
ue

C
yc

le
s 

ad
m

in
is

te
re

d,
 n

 [r
an

ge
]

10
 [1

–5
8]

11
 [1

–4
5]

8 
[1

–5
8]

0.
19

20
 [1

–3
8]

9 
[1

–4
5]

0.
05

*
11

 [1
–4

3]
9 

[1
–5

8]
0.

95

Fo
llo

w
-U

p,
 m

on
th

s 
 

(m
ed

ia
n,

 9
5%

 C
I)

26
.4

  
(2

4.
3–

28
.5

)
28

.9
  

(2
6.

1–
31

.6
)

23
.0

  
(1

9.
9–

26
.1

)
0.

05
*

26
.9

  
(2

3.
6–

30
.1

)
30

.7
  

(2
7.

3–
34

.2
)

0.
18

23
.7

  
(9

.8
–2

7.
5)

28
.0

  
(2

3.
8–

32
.1

)
0.

07

D
ur

at
io

n 
of

 tr
ea

tm
en

t, 
m

on
th

s 
(m

ed
ia

n,
 9

5%
 C

I)
8.

2 
(5

.5
–1

1.
0)

11
.2

 (6
.2

–1
6.

2)
6.

2 
(2

.1
–1

0.
3)

0.
20

20
.0

 (1
2.

3–
27

.6
)

7.
6 

(4
.7

–1
0.

5)
0.

03
*

7.
2 

(4
.8

–9
.6

)
10

.0
 (3

.4
–1

6.
7)

0.
51

Th
er

ap
y 

on
go

in
g,

 n
 (%

)
21

 (1
7.

6)
11

 (1
7.

7)
10

 (1
7.

5)
0.

98
9 

(2
8.

1)
2 

(6
.7

)
0.

03
*

14
 (2

5.
0)

7 
(1

1.
1)

0.
06

R
E

C
IS

T-
ev

al
ua

tio
n 

av
ai

la
bl

e,
 n

 
(%

)
10

5 
(8

8.
2)

55
 (8

8.
7)

50
 (8

7.
7)

1.
0

30
 (9

3.
8)

25
 (8

3.
3)

0.
20

50
 (8

9.
3)

55
 (8

7.
3)

0.
78

O
R

R
, %

 [9
5%

 C
I]

48
.6

 [3
9–

58
]

50
.9

 [3
6–

64
]

46
.0

 [3
2–

60
]

0.
62

63
.3

 [4
7–

80
]

36
.0

 [2
0–

56
]

0.
05

*
52

.0
 [3

8–
66

]
45

.5
 [3

3–
58

]
0.

51

D
C

R
, %

 [9
5%

 C
I]

79
.0

 [7
1–

86
]

83
.6

 [7
3–

93
]

74
.0

 [6
2–

86
]

0.
23

86
.7

 [7
3–

97
]

80
.0

 [6
4–

92
]

0.
51

76
.0

 [6
4–

88
]

81
.8

 [7
1–

91
]

0.
47

T
ab

le
 3

 T
re

at
m

en
t c

ha
ra

ct
er

is
tic

s 
an

d 
re

sp
on

se
 a

cc
or

di
ng

 to
 R

E
C

IS
T

 1
.1

 d
ep

en
di

ng
 o

n 
th

e 
K

R
A

S/
T

P
53

 c
o–

m
ut

at
io

na
l s

ta
tu

s 
an

d 
fo

r 
K

R
A

SG
12

C
/T

P
53

, r
es

pe
ct

iv
el

y

Va
ria

bl
e

K
R

A
S

w
t / 

TP
53

w
t  

(n
=

27
)

K
R

A
S

m
ut
/

TP
53

w
t  

(n
=

36
)

K
R

A
S

w
t /

TP
53

m
ut

  

(n
=

30
)

K
R

A
S

m
ut
/

TP
53

m
ut

  

(n
=

26
)

P
 v

al
ue

K
R

A
S

G
12

C
/

TP
53

m
ut
  

(n
=

12
)

K
R

A
S

G
12

C
/

TP
53

w
t   

(n
=

20
)

K
R

A
S

ot
he

r /
TP

53
m

ut
  

(n
=

14
)

K
R

A
S

ot
he

r /
TP

53
w

t  

(n
=

16
)

P
 v

al
ue

C
yc

le
s 

ad
m

in
is

te
re

d,
 n

 [r
an

ge
]

11
 [1

–4
5]

15
 [1

–4
5]

12
 [1

–4
3]

10
 [1

–3
8]

0.
48

28
 [2

–3
7]

13
 [1

–3
8]

7 
[1

–3
8]

16
 [2

–4
5]

0.
03

*

Fo
llo

w
-u

p,
 m

on
th

s 
(m

ed
ia

n,
 

95
%

 C
I)

25
.6

  
(2

0.
9–

30
.4

)
29

.2
  

(2
4.

7–
33

.7
)

21
.3

  
(1

7.
5–

25
.2

)
28

.9
  

(1
9.

3–
38

.4
)

0.
02

*
26

.9
  

(1
9.

0–
34

.7
)

28
.0

  
(2

3.
7–

32
.2

)
29

.3
  

(2
0.

5–
38

.1
)

30
.7

  
(2

4.
3–

37
.1

)
0.

33

D
ur

at
io

n 
of

 tr
ea

tm
en

t, 
 

m
on

th
s 

(m
ed

ia
n,

 9
5%

 C
I)

3.
2 

 
(1

.2
–5

.3
)

12
.4

  
(9

.7
–1

5.
0)

7.
2 

 
(4

.6
–9

.7
)

6.
8 

 
(3

.1
–1

0.
5)

0.
41

22
.0

  
(1

6.
7–

26
.4

)
12

.4
  

(0
.8

–2
4.

0)
4.

1 
 

(0
.1

–1
1.

8)
12

.3
  

(9
.0

–1
5.

7)
0.

01
*

Th
er

ap
y 

on
go

in
g,

 n
 (%

)
11

 (1
7.

7)
4 

(1
1.

1)
7 

(2
3.

3)
7 

(2
6.

9)
0.

26
6 

(5
0.

0)
3 

(1
5.

0)
1 

(7
.1

)
1 

(6
.3

)
0.

01
*

R
E

C
IS

T-
ev

al
ua

tio
n 

av
ai

la
bl

e,
  

n 
(%

)
22

 (8
1.

5)
33

 (9
1.

7)
28

 (9
3.

8)
22

 (8
4.

6)
0.

45
11

 (9
1.

7)
19

 (9
5.

0)
11

 (7
8.

6)
14

 (8
7.

5)
0.

51

O
R

R
, %

 [9
5%

 C
I]

50
.0

 [3
2–

73
]

42
.4

 [2
4–

61
]

42
.9

 [2
5–

61
]

63
.6

 [4
1–

82
]

0.
42

10
0.

0 
[1

00
–1

00
]

42
.1

 [2
1–

63
]

27
.3

 [9
–5

5]
42

.9
 [1

4–
71

]
0.

00
3*

D
C

R
, %

 [9
5%

 C
I]

77
.3

 [5
9–

96
]

84
.8

 [7
0–

97
]

71
.4

 [5
4–

86
]

81
.8

 [6
4–

96
]

0.
62

10
0.

0 
[1

00
–1

00
]

78
.9

 [5
8–

95
]

63
.6

 [3
6–

91
]

92
.9

 [7
9–

10
0]

0.
09

*,
 P

<
0.

05
. C

I, 
co

nf
id

en
ce

 in
te

rv
al

; R
E

C
IS

T,
 R

es
po

ns
e 

E
va

lu
at

io
n 

C
rit

er
ia

 in
 S

ol
id

 T
um

or
s;

 O
R

R
, o

bj
ec

tiv
e 

re
sp

on
se

 r
at

e;
 D

C
R

, d
is

ea
se

 c
on

tr
ol

 r
at

e;
 K

R
A

S
+

, K
R

A
S

 m
ut

at
io

n;
 

K
R

A
S

–,
 K

R
A

S
 w

ild
ty

pe
; K

R
A

S
ot

he
r , K

R
A

S
 m

ut
at

io
n 

ot
he

r 
th

an
 K

R
A

S
G

12
C
; T

P
53

+
, T

P
53

 m
ut

at
io

n;
 T

P
53

–,
 T

P
53

 w
ild

ty
pe

.



744 Frost et al. KRASG12C/TP53 co-mutations and response to pembrolizumab

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(2):737-752 | http://dx.doi.org/10.21037/tlcr-20-958

available for 105 patients (88.2%), showing an objective 
response rate (ORR) and disease control rate (DCR) of 
48.6% and 79.0%, respectively. Treatment characteristics 
and responses were comparable for KRASmut and TP53mut 
as well as wild type patients (Table 2). However, patients 
with KRASG12C as compared to KRASother were significantly 
longer on therapy (20.0 vs. 7.6 months, P=0.03) and ORR 
was markedly higher (63.3% vs. 36.0%, p=0.05). Patients 
with KRASG12C/TP53mut (n=12) had the longest duration of 
therapy (22.0 months) and all patients showed a response 
(ORR 100.0%, Table 3).

Survival analyses

Median PFS was 8.8 months (92 events, 77.3% of patients, 
95% CI, 4.6–12.9). KRASmut patients displayed an improved 
PFS (13.3 vs. 6.2 months; HR, 0.66, 95% CI, 0.43–1.0, 
P=0.05, Figure 2A), whereas TP53 status had no impact 
(8.0 vs. 9.7 months; HR 0.97, 95% CI, 0.64–1.46, P=0.88,  
Figure 2B). The substantial increase in KRASmut was strongly 
driven by KRASG12C [19.8 vs. 5.8 months (KRASother); HR, 
0.37, 95% CI, 0.20–0.68, P=0.001, Figure 2C], whereas 
results for KRASother and wild type patients (KRASwt) were 
nearly identical. KRASG12C/TP53mut patients experienced 
the by far longest PFS (33.3 months; 95% CI, not estimable 
(NE), 1- and 2-year PFS 83% and 67%) as compared to 
KRASG12C/TP53wt (15.6 months; 95% CI, 10.8–20.4, HR, 
0.48, 95% CI, 0.17–1.35, P=0.16), KRASother/TP53wt (13.1 
months; 95% CI, 10.3–15.9; HR 0.23, 95% CI, 0.08–0.72, 
P=0.01) and KRASother/TP53mut, the latter group displaying 
the worst PFS (2.8 months; 95% CI, 0.0–6.2; HR, 0.18, 
95% CI, 0.06–0.53, P=0.002, Figure 2D). Patients displaying 
a PD-L1 expression <70% had a 1.7-fold decreased PFS 
(HR, 1.72, 95% CI, 1.14–2.60, P=0.01). In multivariate 
analysis, smoking history and KRAS subtypes were 
identified as independent predictors for PFS (Table 4).

Patients treated beyond RECIST-defined progression 
(n=19, 22.9%) due to a sustained clinical benefit displayed 
a time-to-treatment-failure (TTF) of 14.0 months. The 
probability for a treatment beyond progression was higher 
in KRASmut patients (33.3% vs. 13.6%, P=0.04). However, 
TTF was not different according to KRAS mutational 
status (KRASmut vs. KRASwt, 9.0 vs. 6.2 months, P=0.27) and 
within KRAS subgroups, respectively. 

Median OS reached 23.6 months (61 events, 51.3% of 
patients, 95% CI, 15.0–32.2) and was neither influenced by 
KRAS (HR, 0.92, 95% CI, 0.55–1.52, P=0.74, Figure 3A)  
nor TP53 mutational status (HR, 0.85, 95% CI, 0.51–

1.41, 0.85, P=0.52, Figure 3B). Patients with KRASG12C 
experienced a longer OS by trend (HR, 0.50, 95% CI, 
0.25–1.01, P=0.06, Figure 3C). Again, survival was strongly 
influenced by KRASG12C/TP53mut (median OS not yet 
reached; 1- and 2-year OS 92% and 79%), as compared to 
KRASG12C/TP53wt (17.9 months; 95% CI, 12.0–23.8; 1- and 
2-year OS 79% and 41%, HR, 0.24, 95% CI, 0.05–1.07, 
P=0.06) and KRASother/TP53wt (22.0 months; 95% CI, 13.6–
30.6, 1- and 2-year OS 81% and 44%, HR, 0.23, 95% CI, 
0.05–1.05, P=0.06). KRASother/TP53mut patients experienced 
the shortest OS (9.7 months; 95% CI, 2.4–17.0; 1- and 
2-year OS 48% and 30%, HR, 0.17, 95% CI, 0.04–0.76, 
P=0.02, Figure 3D). A PD-L1 expression level of <70% was 
associated with a reduced OS (HR, 1.93, 95% CI, 1.16–
3.20, P=0.01). In multivariate analysis, the initial PS and 
molecular status independently predicted OS, with the best 
HR for KRASG12C/TP53mut (0.20, P=0.03, Table 3). 

Discussion

This investigation identified patients with KRASG12C/
TP53mut LuAD as long-term responders benefitting 
most from upfront pembrolizumab. All patients in this 
molecularly defined subgroup responded to ICI treatment. 
Our study cohort was markedly enriched by KRAS 
mutations, present in >50% of the patients (13), subgroups 
showed the normal distribution pattern of KRASmut LuAD. 
KRASmut patients had a higher PD-L1 expression, probably 
resulting from KRAS-induced stabilization of PD-L1 (25).  
A better response to ICI in KRASmut patients may be 
attributable to a “KRAS phenotype”, clinico-pathologically 
characterized by its tobacco-association, PD-L1 positivity 
and an inflamed tumor microenvironment (26). However, 
results from prospective clinical trials and real-world data 
are conflicting. A meta-analysis including 509 patients from 
3 second and further line studies with ICI demonstrated 
an OS benefit in KRAS mutations as compared to wild 
type patients (HR, 0.64, 95% CI, 0.43–0.96, P=0.03) (27). 
In contrast, real-world data with nivolumab from the 
Italian expanded access program analyzing 530 patients in 
the second and further line setting (PFS 4 vs. 3 months, 
P=0.56; OS 11.2 vs. 10 months, P=0.86) (28) and a French 
investigation with 282 patients having received ICI in all 
lines of therapy showed no survival differences (HR for 
PFS and OS 0.93) (29). Altogether, patient populations 
were very heterogeneous; only one study included first line 
patients and this to a very small degree (8.5%). 

Our results suggest that looking on the KRAS mutational 
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status as positive or negative alone may be inadequate, as 
substantial differences between KRASG12C and KRASother 
are given for response and survival. Smoking behavior is 
correlated to a distinct spectrum of KRAS mutations with 
KRASG12D more frequently observed in never smokers and 
KRASG12C being the predominant mutation in smokers (30).  
The lower probability for a high TMB in KRASG12D 
mutations might provide a molecular rationale for different 
responses to IO, whereas KRASG12C mutations display 
higher shares of PD-L1 positivity (≥50%) as well as high 
TMB (31). A prognostic value of KRASG12C remained to be 
demonstrated, as KRAS subtyping, if determined, showed 
no survival difference in the second- and further line setting 
(29,32). An exploratory analysis from the Keynote-042 
study recently suggested a moderate benefit in ORR (67% 
vs. 57%), PFS (15 vs. 12 months) and OS (not reached 
vs. 28 months) in favor of KRASG12C vs. KRASother, but 
the subgroup of patients with PD-L1 ≥50% has not been 
reported separately (33). 

Analogous to KRASmut, TP53mut are associated with an 
enhanced PD-L1 expression (34,35). These cancers are 
molecularly characterized by neoantigen accumulation-
induced tumor immunogenicity, resulting from a loss 
of function of this transcriptional key player in cell 
homeostasis. In PD-L1 non-selected metastatic NSCLC, 
TP53mut consequently increased response to ICI and 
improved OS (HR, 0.48, 95% CI, 0.25–0.95, P=0.04) (36). 
In contrast, no relationship between TP53 and response 
or outcome was obvious in our study, although OS was 
numerically also in favor of TP53mut. Interestingly, a large 
and sustained clinical benefit was observed in KRASG12C/
TP53mut, associated to a higher share of highest PD-L1 
expression levels (≥90%: 41.7% vs. 20.0% in KRASother). 
We identified a PD-L1 expression ≥70% as threshold for an 
improved survival, but observed an even more pronounced 
benefit in patients with a PD-L1 expression ≥90% (ORR, 
PFS and OS 68.0%, 13.1 months and NE vs. 42.5%, 6.2 
and 18.9 months in PD-L1 <90%), thereby confirming 
recently published findings (37). 

The favorable outcome observed in these co-mutated 
subgroups might thus result from synergistic and 
complementary effects on PD-L1 expression, TMB and 
cell cycle repair mechanisms mediated independently by 
KRASmut and TP53mut and leading to an inflamed tumor 
microenvironment with adaptive immune resistance and 
high immunogenicity (35). In an exploratory analysis from 
the Keynote-001 trial, all patients with KRASmut/TP53mut 
were also PD-L1 high (≥50%) and experienced a durable 

clinical benefit (35). Similar results have been reported from 
real life cohorts (38,39). However, as KRAS subgroups 
have not been investigated separately, it remains unclear, 
whether a “KRAS-TP53-synergy” is independent from the 
specific KRASmut or rather might be strongly relying on 
KRASG12C/TP53mut.

To the best of our knowledge, our investigation is 
the first one demonstrating a strong prognostic value 
for KRASG12C/TP53mut in the PD-L1 high population. 
Its strength is a clear focus on a well-defined, uniform 
patient population in contrast to studies including patients 
irrespective from PD-L1 strata and line of therapy. The 
thereby resulting heterogeneity may not only make 
comparisons impossible, but might also dilute an impact of 
KRAS and TP53 mutations, as these molecularly defined 
cohorts might perform differently according to the PD-L1 
expression levels.

Recently and after years of discouraging research, 
promising results have been published for the first small 
molecules directly targeting specific KRAS mutations. 
Sotorasib and MRTX849 selectively inhibit KRAS-
dependent signaling by modifying mutant cysteine 12 
in GDP-bound KRASG12C (40,41) and are currently 
investigated in clinical trials. Comparing different modes 
of action, with ICI on the one hand and specific tyrosine 
kinase inhibitors on the other, it is tempting to speculate, 
which therapeutic option for patients with KRASG12C/
TP53mut might perform best.

This  s tudy has  severa l  l imitat ions .  Due to  i t s 
retrospective design, a certain selection bias in favor of 
patients displaying a better PS cannot be excluded. As only 
patients with available PD-L1 expression and parallel NGS 
testing were included, those with a clinically unfavorable 
prognosis due to a reduced PS in whom molecular testing 
may have been omitted were not analyzed. Second, 
the use of different diagnostic antibodies (22C3 in the 
KEYNOTE trials, E1L3N and QR1 in our investigation) 
as well as the examination by different pathologists might 
have biased results for PD-L1 staining. However, a 
growing body of evidence supports the comparability of 
different standardized assays and laboratory-developed 
tests (42,43). All participating centers were certified by the 
quality management initiative of the German Society of 
Pathology (QuIP®) after having successfully passed round-
robin tests for PD-L1 testing, therefore results can be 
regarded as comparable. Third, TMB was not evaluated. 
Thus, molecular groups may be unbalanced and outcome 
may be biased by a higher neoantigen load in KRASG12C/
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TP53mut patients (35,44). Forth, we did not account for 
additional, presumably negative predictive and prognostic 
KRAS-associated co-mutations like STK11 or KEAP1, as 
they were not included into the routine NGS assay (20). 
Lower frequencies of e.g., STK11 mutations leading to 
immunologically cold cancers might have contributed to 
the improved outcome in KRASG12C patients. However, 
recently published data in this setting are inconclusive. 
Whereas no differences among KRAS subgroups were 
observed in the LC-SCRUM-Japan study, STK11 co-
mutations occurred less frequently in KRASG12D but were 
equally present in KRASG12A, C, V or Q61X in a large US cohort 
(31,44). Noteworthy, a favorable survival in KRASmut/
TP53mut patients may be even preserved in the presence 
of STK11 mutations (38). Fifth, as patients were treated 
within the valid standard of care outside a clinical trial, 
imaging intervals varied, thereby potentially biasing PFS. 
Additionally, RECIST assessments were not confirmed 
independently. Finally, given the inclusion of patients 
with pembrolizumab monotherapy only without a control 
group, this study was not designed to evaluate a predictive 
value of either KRASG12C alone or in combination with 
TP53mut. However, one should keep in mind that KRASmut 
have consistently been associated with a worse outcome 
in the era of chemotherapy and no survival differences 
were identified according to the applied regimens. Thus, 
no predictive value for standard chemotherapy has been 
established (16,45,46).

Conclusions

A comprehensive KRAS subtyping and TP53 assessment 
may allow a prognostic highly relevant differentiation 
of patients with metastatic, PD-L1 high LuAD, treated 
upfront with pembrolizumab. The advantage of the 
proposed approach is its availability for the majority of 
patients with LuAD, as NGS panel testing has become 
the method of choice to screen for actionable genetic 
alterations. In contrast to large panels or whole exome 
sequencing needed for TMB, a small gene panel might be 
sufficient to provide the necessary prognostic information. 
Whether the constellation of PD-L1 ≥50% and KRASG12C/
TP53mut favors upfront ICI monotherapy vs. an ICI-
chemotherapy combination should be addressed in further, 
prospective studies.
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