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Original Article

Targeting histone deacetylase enhances the therapeutic effect 
of Erastin-induced ferroptosis in EGFR-activating mutant lung 
adenocarcinoma
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Background: Intrinsic or acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors 
(EGFR-TKIs) is common, thus strategies for the management of EGFR-TKIs resistance are urgently 
required. Ferroptosis is a recently discovered form of cell death that has been implicated in tumorigenesis 
and resistance treatment. Accumulating evidence suggests that ferroptosis can be therapeutically exploited 
for the treatment of solid tumors; however, whether ferroptosis can be targeted to treat EGFR mutant lung 
cancer and/or overcome the resistance to EGFR-TKIs is still unknown. 
Methods: The effect of ferroptosis inducers on a panel of EGFR mutant lung cancer cell lines, including 
those with EGFR-TKI intrinsic and acquired (generated by long-term exposure to the third-generation 
EGFR-TKI osimertinib), was determined using cytotoxicity assays. Further, drug candidates to enhance the 
effect of ferroptosis inducers were screened through implementing WGCNA (weighted gene co-expression 
network analysis) and CMAP (connectivity map) analysis. Flow cytometry-based apoptosis and lipid 
hydroperoxides measurement were used to evaluate the cell fates after treatment. 
Results: Compared with EGFR-TKI-sensitive cells, those with intrinsic or acquired resistance to  
EGFR-TKI display high sensitivity to ferroptosis inducers. In addition, Vorinostat, a clinically used inhibitor 
targeting histone deacetylase, can robustly enhance the efficacy of ferroptosis inducers, leading to a dramatic 
increase of hydroperoxides in EGFR mutant lung cancer cells with intrinsic or acquired resistance to  
EGFR-TKI. Mechanistically, Vorinostat promotes ferroptosis via xCT downregulation.
Conclusions: Ferroptosis-inducing therapy shows promise in EGFR-activating mutant lung cancer 
cells that display intrinsic or acquired resistance to EGFR-TKI. Histone deacetylase inhibitor (HDACi) 
Vorinostat can further promote ferroptosis by inhibiting xCT expression.
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Introduction

Lung cancer is a malignant tumor with the highest 
mortality, and lung adenocarcinoma (LUAD) accounts 
for 40% of all lung cancer cases (1). In Asia, epidermal 
growth factor receptor (EGFR) is the most common driver 
mutation in LUAD, with an incidence of 55% (2-4). Of 
those, EGFR-activating mutation in LUAD accounts for 
17.4% worldwide and 37.3% in China (5). EGFR tyrosine 
kinase inhibitors (EGFR-TKIs) currently represent the 
standard first-line treatment for patients with EGFR mutant 
LUAD (6). Although using EGFR-TKI has resulted in 
significant clinical benefit and an unprecedented increase in 
survival in patients with advanced EGFR mutant NSCLC 
(7-10), acquired resistance invariably develops. Secondary 
EGFR mutations, including EGFR-T790M mutations and 
other mutations within the EGFR domain, mutations in 
MAPK, PI3K and cell cycle genes and amplification of 
EGFR or other oncogenes, like MET, lead to acquired 
EGFR-TKI resistance of LUAD cells (11-13). However, 
some patients acquired resistance to EGFR-TKI in the 
absence of known resistance mechanisms. Thus, intrinsic 
EGFR-TKI resistance is a clinical challenge. It is reported 
that about 20–30% EGFR-mutant LUAD were intrinsic 
resistant to EGFR-TKI (14). Therefore, how to overcome 
these acquired and intrinsic EGFR-TKI resistance has been 
the focus of clinical attention.

Ferroptosis is a newly discovered form of cell death caused 
by an accumulation of toxic lipid peroxides (15). Recent 
evidence suggested that ferroptosis is commonly dysregulated 
and contributes to tumorigenesis (16), highlighting anti-
ferroptosis as a promising anticancer strategy (17) or to 
overcome therapeutic resistance (18). Lipoxygenases (LOXs) 
are a set of non-heme iron-containing enzymes that catalyze 
the peroxidation of free and esterified polyunsaturated 
fatty acids to corresponding lipid peroxides (19,20) while 
GPX4 reduces the toxic lipid peroxides to the nontoxic fatty 
alcohols (19,21). The use of GPX4 inhibitors, including 
rat sarcoma viral oncogene homolog (RAS)-selective lethal 
factor 3 (RSL3), can effectively induce ferroptosis (19). 
GPX4 reduces lipid peroxides using GSH as a cofactor (20).  
Cysteine is necessary for the synthesis of GSH, and cystine, 

the precursor of intracellular cysteine, is imported by the 
amino acid transporter system xc−. system xc– is a heterodimer 
consisting a light chain (xCT, SLC7A11) and a heavy chain 
(4F2hc, SLC3A2). xCT is the key protein of the ferroptosis 
regulatory network (20,22). Overexpression of xCT can 
protect tumor cells from ferroptosis (23). Dixon et al. (19,20) 
showed that using xCT inhibitor Erastin may directly inhibit 
the system xc– activity, reduce cystine uptake and induce 
ferroptosis. However, Erastin can induce the compensatory 
increase of xCT (16). Bersuker et al. (24) displayed that 
ferroptosis inhibitor protein 1 (FSP1), also known as 
apoptosis-inducing factor mitochondrial associated protein 
2 (AIFM2), may inhibit cell ferroptosis through GPX4-
independent pathways.

Interestingly, a growing body of evidence has shown that 
EGFR signaling pathway participates in ferroptosis regulation 
(25-29). However, it is still unclear whether ferroptosis induction 
can be used as a new strategy to treat EGFR mutant LUAD 
or overcome the acquired and intrinsic EGFR-TKI resistance. 
Therefore, in this study, we attempted to treat intrinsic and 
acquired EGFR-TKI resistant LUAD by inducing ferroptosis.

The development of therapeutic resistance is common. 
To further dissect the therapeutic effect of ferroptosis 
inducers, we searched for targeted drugs that could 
affect tumor cells’ ferroptosis sensitivity. Our previous 
studies have found that various potential drugs can induce 
ferroptosis of cancer cells (30). 

In this study, by combining weighted gene co-expression 
network analysis (WGCNA) with Connectivity Map 
analysis (CMap), we found that a histone deacetylase 
inhibitor (HDACi), Vorinostat, could reverse the ferroptosis 
resistance of tumor cells and further promote the 
therapeutic effect of ferroptosis induction. Mechanistically, 
we found that HDACi exerted its role via downregulating 
SLC7A11 (xCT). Together, in this study, we found that 
after developing resistance to EGFR-TKIs, EGFR-mut lung 
cancer cells display hypersensitivity to ferroptosis inducers, 
which, to our best knowledge, has not been reported. Also, 
we implemented bioinformatic strategies to search for drugs 
(HDAC inhibitors) that have the most potential to enhance 
the effect of ferroptosis inducers. Finally, we confirmed that 
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combined HDAC inhibitors could dramatically enhance the 
efficacy of ferroptosis inducers. We present the following 
article in accordance with the MDAR reporting checklist 
(available at http://dx.doi.org/10.21037/tlcr-21-303).

Methods

Materials

The materials used in this study are described in Table 1. 

Study methods

The study was conducted in accordance with the Declaration 

of Helsinki (as revised in 2013). This study research did not 
involve human or animals, thus ethical approval was waived.

Human LUAD cell lines and cell culture

EGFR mutant LUAD cell lines, HCC827, HCC4006, 
H1975, H1650, PC9, HCC4011 and H1993, were 
preserved by our laboratory. Osimertinib resistant cell 
lines HCC827R and H1975R were established and 
preserved in our laboratory, according to our previous 
study (31). The development of resistance to EGFR-
TKI in HCC827 (HCC827R) and H1975 (H1975R) was 
confirmed by cell viability assay (Figure S1A,B). Cells 

Table 1 The materials used in this study 

Reagent or resource Source Identifier

Cell Lines

HCC827 Shanghai Chest Hospital

HCC4006 Shanghai Chest Hospital

HCC4011 Shanghai Chest Hospital

H1975 American type culture collection (ATCC)

H1650 ATCC

H1993 ATCC

PC9 ATCC

HCC827R Shanghai Chest Hospital

H1975R Shanghai Chest Hospital

Agents

Erastin Selleck CAS No. 571203-78-6

Osimertinib Selleck CAS No. 1421373-65-0

Vorinostat Selleck CAS No. 149647-78-9

Erlotinib Selleck CAS No. 183321-74-6

Afatinib Selleck CAS No. 439081-18-2

BODIPYTM 581/591 C11 Invitrogen CAS No. D3861

0.4% Trypan Blue Stain YEASEN 40207ES60

CCK8 kit Dojindo, Japan CK04-500

Antibodies

Anti-xCT CST, Danvers, USA #12691

Anti-actin Multisciences, Hangzhou, China ab008-100

HRP labeled mouse second antibody Multisciences, Hangzhou, China GAM0072

HRP labeled rabbit second antibody Multisciences, Hangzhou, China GAR0072
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were cultured in a complete medium holding 90% RPMI-
1640 medium, 10% fetal bovine serum (FBS), and 1% 
100× penicillin and streptomycin, at 5% CO2 and 37 ℃ 
incubators. 

Detecting ferroptosis of LUAD cells by C11-BODIPY

H1650, HCC827R, H1975R cells were cultured in 6-well 
plates with 105 cells per well. The next day, H1650 cells were 
treated with DMSO, Vorinostat 1 μM, Erastin 1 μM, or 
Erastin 1 μM + Vorinostat 1 μM for 48 h. HCC827R cells 
were treated with DMSO, Vorinostat 0.5 μM, Erastin 5 μM, 
or Erastin 5 μM + Vorinostat 0.5 μM for 24 h. C11-BODIPY 
lipid peroxide probe solution (2.5 μM, using RPMI-1640 
medium as solute) was added to each well. After incubation at 
37 ℃ for 30 min, each group’s cells were collected. The level 
of lipid peroxidation was quantified by flow cytometry (30). 
The concentration of Erastin and Vorinostat was determined 
based on the previous literature (16,17,19,21,32,33). 

Detecting apoptosis in LUAD cells by Annexin V/PI double 
staining

H1650 cells were cultured in 6-well plates at 1×105 cells 
per well. After being cultured overnight, H1650 cells were 
divided into four groups: control, Vorinostat 1 μM, Erastin 
1 μM, Erastin 1 μM + Vorinostat 1 μM. After 48 hours, 
the cells were collected, incubated with PI and AnnexinV-
FITC (34-36). The positive cells for apoptosis (AnnexinV-
FITC positive, PI negative, or APC annexin V positive, PI 
positive) were analyzed by flow cytometry. 

Western blotting (WB) analysis

HCC827, HCC4006, H1650, PC9, H1993 and HCC827R 
cells were cultured in 6 cm dishes and divided into control 
group, Erastin (1 μM) group, Vorinostat group (1 μM), and 
combination group (1 μM Vorinostat and 1 μM Erastin). 
After 24 h treatment, the cells were lysed with RIPA buffer, 
and the lysate proteins were separated on 10% SDS-PAGE 
gel. The protein was transferred to the PVDF 0.2 μm 
membrane by wet transfer. Samples were transferred to the 
PVDF membrane (Millipore Corporation, IPVH00010), 
sealed with TBST holding 5% skim milk powder, and 
incubated for 1 hour at room temperature; the primary 
antibody was incubated at 4 ℃ overnight. The membranes 
were then washed 3× with TBS/T, incubated with secondary 

antibody at 1:5,000 for 1 hour in TBS/T, and washed 3× 
with TBS/T. HRP-conjugated bands were imaged using 
enhanced chemiluminescence reagent (ECL, Thermo 
Fisher), and chemiluminescence was recorded with aby 
BIO-RAD ChemiDoc-XRS+ chemiluminescence imager. 

Cell counting assay and cell viability assay.

HCC827, HCC4006, H1650, PC9, H1993, H1975, 
HCC4011, H1975R and HCC827R were inoculated into 
6-well plates and divided into control group, Erastin (1 μM) 
group, Vorinostat group (1 μM) and combination group  
(1 μM Vorinostat and 1 μM Erastin). After 48 hours of drug 
treatment, the cells of each group were collected. After 
trypan blue staining, the living cells in each group were 
counted. The cell viability was calculated according to the 
formula: cell viability (%) = [(the number of living cells 
in the control group) − (the number of living cells in the 
treated group)]/(the number of living cells in the control 
group) ×100%. The dose of Erastin and RSL3 that we 
used to treat EGFR mutant LUAD cells (H1650, H1993, 
and HCC4011) in Figure 1A,B,C,D,E,F,G,H was lower 
than the conventional experimental dose (Erastin, 5 μM; 
RSL3, 1 uM) (16,17,19,20). 

Cell proliferation assays

H1650, HCC4011, H1993, H1975R and HCC827R cell 
lines were seeded at 5×103 cells/well in 96-well plates. 
Three replicate wells were used for each analysis. After the 
cells were incubated with different concentrations of drugs 
for 4 days, respectively, cell viability was monitored with 
CCK8 kit (CCK8, Dojindo, Japan) following the producer’s 
suggestions; 10 μL CCK-8 solution was added to each 
well, incubated for 2 h, and then assayed using a microplate 
reader with a wavelength of 450 nm. The growth curve 
was drawn with drug concentrations as the abscissa and 
absorbance value as the vertical axis.

Data sources and analysis

From the attachment of the literature DOI: 10.1038/
nchembio.1986,  we obta ined the area  under  the 
concentration-effect curve (AUC) of Erastin, RSL3, ML162 
to 659 kinds of tumor cell lines (37).

We obtained the 659 tumor cell lines, the mRNA 
expression matrix from the CCLE database (Cancer Cell 



1861Translational Lung Cancer Research, Vol 10, No 4 April 2021

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(4):1857-1872 | http://dx.doi.org/10.21037/tlcr-21-303

Figure 1 EGFR-TKI intrinsic drug-resistant EGFR activating mutant lung cancer cells are more sensitive to ferroptosis inducers. (A) 
HCC4011, H1993, H1650 cells were divided into two groups: treatment group (Erastin 5 μM) and control group. After 48 hours of 
treatment, the cells were counted, and a t-test was used to compare the number of cells between the two groups. (B) HCC4011, H1993, 
H1650 cells were divided into treatment groups (RSL3 1 μM) and the control group. After 48 hours of treatment, the cells were counted, 
and a t-test was used to compare the number of cells between the two groups. CCK8 assay was used to detect the sensitivity of HCC4011, 
H1993, H1650 to afatinib (C), Erlotinib (D), RSL3 (E), Erastin (F). (G,H) HCC827, HCC827R, H1975, H1975R cells were divided into 
two groups: treated group (RSL3 1 μM or Erastin 5 μM) and control group. The cells were counted after treatment for 72 hours, 120 hours, 
and 168 hours, and the number of cells in each group was compared with the t-test. *, P<0.05; **, P<0.005; ***, P<0.0005; ****, P<0.00005.  
EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor.

Line Encyclopedia, https://portals.broadinstitute.org/ccle/
about), including 18,543 genes.

WGCNA

We used the R package “WGCNA” for WGCNA analysis 
to find the key gene modules and hub genes related to 

ferroptosis sensitivity (32,38,39). According to the dissimilarity 
measurement for Topological Overlap Matrix (TOM), genes 
are divided into different gene modules. Here, we set the soft 
threshold to 4 (scale-free R2=0.96), the cutting height to 0.25, 
and the minimum number of module genes to 30 to find key 
modules. The Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analysis were 
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performed on the module with the highest correlation with 
R software’s ferroptosis sensitivity. The genes with GS (gene 
significance) >0.3 and MM (module membership) >0.8 
are defined as hub genes. The co-expression network of  
30 hub genes with the highest connectivity was visualized by 
Cytoscape software (version 3.4.0).

Gene functional enrichment analysis and protein 
interaction network analysis

The R packet “clusterprofiler” was used for GO enrichment 
and KEGG pathway enrichment analysis. The GO terms 
and KEGG pathways with a corrected P value <0.05 were 
considered significant and were visualized by “GOplot”  
(R packet). Protein interaction network analysis was 
performed using STRING (https://string-db.org).

Screening of drugs that promote ferroptosis by using the 
Connectivity Map database

The top 500 high connectivity genes in the gene modules 
which was the most positively correlated with ferroptosis 
sensitivity in WGCNA analysis were taken as a down-tag 
gene set, and the top 500 high connectivity genes in the 
gene modules which was the most negatively correlated 
with ferroptosis sensitivity in WGCNA analysis were taken 
as an up-tag gene set. The expression profiles of these 
1,000 genes were uploaded into CMap (http://www.broad.
mit.edu/cmap/) database to obtain the drugs that have the 
potential to reverse the ferroptosis resistance genotype (gene 
expression profile) (40).

Statistical analysis

Data were presented as mean ± standard deviation, with the 
indicated sample size (n) representing biological replicates. 
Data analysis was performed using R (version 3.6.3) (41-43).  
Statistical significance was determined by one-way/two-
way analysis of variance (ANOVA), Bonferroni’s multiple 
comparison test, and Student’s t-test using R, unless otherwise 
indicated. P<0.05 was considered statistically significant.

Results

EGFR-TKI intrinsic resistant LUAD cells and EGFR-TKI 
acquired resistant LUAD cells are sensitive to ferroptosis 
inducers

Firstly, we observed that ferroptosis inducers Erastin and 

RSL3 could significantly decrease cell number of three 
EGFR mutant LUAD cell lines (H1650, H1993, and 
HCC4011) (Figure 1A,B). Assessing EGFR-TKI sensitivity, 
H1650 showed strong resistance to both the first and 
second generations of EGFR-TKI, followed by H1993, and 
HCC4011 was the most sensitive (Figure 1C,D). Assessing 
ferroptosis inducers sensitivity, we could see that H1650, 
which was the most resistant to EGFR-TKI, was the most 
sensitive to Erastin and RSL3. However, HCC4011, which 
was the most sensitive to the first- and second-generation 
EGFR-TKI, was the most resistant to Erastin and RSL3 
(Figure 1E,F). In addition, the lung cancer cell line 1975R, 
which was resistant to the third-generation EGFR-TKI 
osimertinib, was more sensitive to ferroptosis inducers than 
the primary cell line H1975 (Figure 1G,H). 

Screening of key genes affecting ferroptosis resistance 
of tumor cells by WGCNA analysis combined with 
Connectivity Map technique

The sensitivity of each tumor to ferroptosis was measured 
by the concentration-effect curve (AUC) of three ferroptosis 
inducers: Erastin, RSL3, ML162. The mRNA expression 
matrix (including 18,543 genes of 659 tumor cell lines) 
and AUC matrix were used to perform WGCNA analysis  
(Figure 2A). By setting the soft threshold power as 5 (R2=0.92) 
and the cutting height as 0.25, we identified nine gene 
modules (Figure 2B,C,D,E, unclustered DEG was shown in 
gray). From the heatmap of module-trait correlations, we 
found that the blue module was the most positively correlated 
with the AUC score of the three ferroptosis inducers, and 
the black module was the most negatively correlated with the 
AUC score of the three ferroptosis inducers. By calculating 
the correlation between the GS and MM, we further 
verified the genes in the blue module, and the black module 
was significantly correlated with the ferroptosis sensitivity  
(Figure S2A,B). The relationship between the genes in the 
blue module and the blue module and ferroptosis resistance 
was further verified.

Thus, the overexpression of genes in the blue module 
could inhibit tumor cells’ ferroptosis, while the overexpression 
of genes in the black module could promote tumor cells’ 
ferroptosis. Targeting genes in the blue module could 
reverse the ferroptosis resistance of tumors.

Co-expression network analysis showed that the 
expression of 30 most connected genes in the blue and black 
module was significantly positively correlated (Figure S2C,D)  
and there was the interaction between the proteins expressed 

https://cdn.amegroups.cn/static/public/TLCR-21-303-Supplementary.pdf
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by these genes (Figure S2E,F). We performed GO and 
KEGG analysis to reveal genes’ potential biological function 
in the black and blue modules. In GO analysis, the blue 
module was significantly enriched in epidermal development 
and epidermal differentiation (Figure 3A,B), while in KEGG 
enrichment analysis, the blue module was significantly 
enriched in Wnt and Hippo signal pathways. In GO analysis, 
the black module was significantly enriched in small GTP 
enzyme binding and RasGTP enzyme binding, while in 
KEGG analysis, the black module was significantly enriched 
in the chemokine-related pathway and Rap1 signal pathway 

(Figure 3C,D).

Screening drugs that can reverse ferroptosis resistance of 
EGFR mutant LUAD cells

The top 500 genes with the highest connectivity in the 
black module were taken as the down-tag gene set, and 
the top 500 genes with the highest connectivity in the blue 
module were taken as the up-tag gene set. The 1,000 genes 
were uploaded into the Connectivity Map (CMap, http://
www.broad.mit.edu/cmap/) analysis in QuerySignature 

Figure 2 WGCNA analysis was used to screen the key gene modules correlated with ferroptosis sensitivity. (A). The samples were clustered 
with the expression data of 18,543 genes in 659 tumor cell lines, and the outlier samples were excluded. (B) The gene clustering tree (tree 
view) is obtained from the hierarchical clustering of adjacency correlation, and the color rows below the tree represent the gene modules 
identified by the dynamic cutting tree method. (C) The scale-free index is calculated under different soft thresholds. (D) The average 
connectivity is calculated at different soft thresholds. (E) The correlation between each gene module and different ferroptosis inducer 
AUC value; each row represents the module’s characteristic gene. Each column represents the different ferroptosis inducer AUC value; the 
corresponding correlation value of the first behavior in each cell, the second behavior P value; the redder the cell color is, the more positive 
the correlation is, and the bluer the cell color is, the more negative the correlation is.
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Figure 3 Gene enrichment analysis of black module and blue module. (A) Blue module GO enrichment analysis results. (B) Blue module 
KEGG enrichment analysis results. (C) Black module GO enrichment analysis results. (D) Black module KEGG enrichment analysis results. 
The dot size shows the number of genes, the Y-axis is the enriched pathway in GO and KEGG analysis, and the legend’s color is marked 
according to the corrected P value. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

file format. The outputs of CMap analysis were sorted 
according to the mean of the correlation coefficient, and the 
drugs with negative correlation were proposed to reverse 
ferroptosis resistance status (40). We took P<0.05 as the 
criterion for judging the significant effect of drugs, and 
a total of 33 drugs were selected (Figure 4A). Among the  
33 drugs, Vorinostat had the highest specificity (specificity 
=0.60, Figure 4B). It was suggested Vorinostat could reverse 
ferroptosis resistance and enhance the therapeutic effect of 
ferroptosis inducer.

To evaluate this hypothesis, we used Vorinostat and 
Erastin alone or in combination to treat EGFR mutant 
LUAD cells (HCC827, HCC4006, PC-9, H1650, H1993). 
We selected HCC827, HCC4006 and PC9 cells as EGFR 
TKI sensitive lines and H1650, PC9 cells as EGFR-TKI 

resistant lines according to the previous studies (44-47). The 
results showed that the cell numbers of combination group 
were more prominently diminished than that of single-
drug group (Figure 4C). We also observed that Vorinostat 
significantly enhanced the inhibitory effect of Erastin on 
the proliferation of EGFR-TKI acquired resistant cell line 
HCC827R and H1975R (Figure 4D). 

In addition, in the EGFR-TKI resistant H1650 cell 
line, we found that the level of lipid peroxide, a biomarker 
of ferroptosis, was higher in the Vorinostat and Erastin 
combination treatment group than that in the single-
drug group (Figure 5A). In addition, apoptosis level of 
combination treatment group was more obvious than that 
of single-drug group (Figure 5B). Therefore, we believed 
that Vorinostat significantly promoted the Erastin-
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Figure 4 The drugs reversing ferroptosis resistance were screened by Connectivity Map, and the inhibitory effect of the selected drugs on cell 
proliferation was verified by cytotoxicity test. (A) Three-dimensional scatter map. The drugs with P<0.05 were marked red, and those with 
P>0.05 were marked blue. (B) Taking P<0.05 as the criterion for judging the significant effect of drugs, a total of 33 drugs were selected. Among 
them, Vorinostat has the highest specificity (specificity =0.618). (C) HCC4006, H1650, HCC827, H1993, PC-9 cells were divided into control 
group, Erastin (1 μM) group, Vorinostat group (HDAC inhibitor, 1 μM) and combination group (1 μM Vorinostat and 1 μM Erastin). The 
number of cells was counted after 48 hours of drug treatment, and the number of cells in different treatment groups was compared by one-
way ANOVA test and Bonferroni method. (D) HCC827R and H1975R cells were divided into blank control group, Erastin (1 μM) group, 
Vorinostat group (HDAC inhibitor, 1 μM), and combination group (1 μM Vorinostat and 1 μM Erastin). The number of cells was counted 
after 48 hours of drug treatment, and the number of cells in different treatment groups was compared by one-way ANOVA test and Bonferroni 
method. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. HDAC, histone deacetylase; ANOVA, analysis of variance. 
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Figure 5 Vorinostat promotes ferroptosis in Erastin-induced EGFR-activating mutant lung adenocarcinoma cells and EGFR-TKI-acquired drug-
resistant cells. (A) H1650 cells were divided into four groups: control, Vorinostat 1 μM, Erastin 1 μM, Erastin 1 μM + Vorinostat 1 μM. C11-
BODIPY lipid peroxide probe solution was added into each well 48 hours after administration. The ferroptosis negative gate and ferroptosis 
positive gate were divided according to the control group, and the proportion of ferroptosis negative cells and ferroptosis positive cells was 
recorded. As shown in the figure, compared with the single drug group, the proportion of ferroptosis positive cells in the combination group 
of Erastin and Vorinostat increased significantly. (B) H1650 cells were cultured in 6-well plates at 1×105 cells per well. After being cultured 
overnight, H1650 cells were divided into four groups: control, Vorinostat 1 μM, Erastin 1 μM, Erastin 1 μM + Vorinostat 1 μM. After 48 hours, 
the cells were collected, incubated with PI and AnnexinV-FITC at room temperature in the dark for 5 minutes. The positive cells for apoptosis 
(AnnexinV-FITC positive, PI negative, or APC annexin V positive, PI positive) were analyzed by flow cytometry. (C) HCC827R cells were 
divided into four groups: control, Vorinostat 0.5 μM, Erastin 5 μM, Erastin 5 μM + Vorinostat 0.5 μM. Twenty-four hours after administration, 
2.5 μM, C11-BODIPY lipid peroxide probe solution was added to each well. The ferroptosis negative gate and ferroptosis positive gate were 
divided according to the control group, and the proportion of ferroptosis negative cells and ferroptosis positive cells was recorded. (D) The 
1975R cells were divided into four groups: control, Vorinostat 0.5 μM, Erastin 10 μM, Erastin 10 μM + Vorinostat 0.5 μM. 24 hours after 
administration, 2.5 μM, C11-BODIPY lipid peroxide probe solution was added to each well. The ferroptosis negative gate and ferroptosis 
positive gate were divided according to the control group, and the proportion of ferroptosis negative cells and ferroptosis positive cells was 
recorded. EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor.

induced ferroptosis of EGFR mutant LUAD cells. Lipid 
peroxide detection assay also showed that Vorinostat could 
significantly enhance the Erastin-induced ferroptosis of 
HCC827R and H1975R cells (Figure 5C,D). It is worth 
noting that growing evidence in the literature suggests 
monotherapy with Vorinostat could overcome EGFR-TKI 
acquired resistance (48).

Vorinostat enhances the ferroptosis of EGFR mutant 
LUAD cells induced by Erastin by down-regulating the 
expression of xCT

Western blot results showed the expression of xCT protein 
decreased in HCC827, HCC4006, PC-9, H1650, and 
H1993 cells after treating them with Vorinostat alone, while 
the expression of xCT protein increased in these cells after 
treating them with Erastin alone, while Erastin combined 
with Vorinostat reversed the compensatory increase of xCT 
induced by Erastin (Figure 6A,B,C,D,E). Not only that, but 
we also found comparable results in EGFR-TKI acquired 
resistant cell line HCC827R (Figure 6F). 

Discussion

EGFR is the most frequent oncogenic driver mutation in 
Chinese patients with LUAD (2-4). The standard first-
line treatment for LUAD with EGFR mutation includes 
EGFR-TKI (49). Although most patients with LUAD 
harboring EGFR-TKI-sensitizing mutations have an initial 
responsiveness to EGFR-TRKI treatment, LUAD cells 

will inevitably develop acquired EGFR-TKI resistance 
under drug selective pressure. Secondary mutations, 
including EGFR-T790M mutations and other mutations 
within the EGFR domain, mutations in MAPK, PI3K and 
cell cycle genes and amplifications of other oncogenes 
lead to acquired drug resistance of LUAD cells to EGFR-
TKI (50,51). In addition, 20–30% of LUAD patients with 
EGFR sensitive mutations are insensitive to EGFR-TKI 
and display intrinsic drug resistance (14). Therefore, it is 
crucial to understand the mechanisms of sensitivity and 
resistance to currently available therapies in this subset of 
lung cancers.

Previous data have shown that ferroptosis regulatory 
system’s inactivation plays a key role in tumor occurrence 
and development. Against this background, researchers have 
recently proposed various schemes to induce ferroptosis (52).  
The efficacy of ferroptosis induction therapy in treating 
EGFR mutant LUAD and EGFR-TKI-resistant LUAD 
has not been reported but it has been proven that the 
activation of the EGFR pathway can increase the expression 
of the proteins in the lipid peroxide reduction system 
(25-29) while also promote the accumulation of intrinsic 
lipid peroxides (53-55). For example, the activation of 
the EGFR-p62-Keap1-NRF2 pathway in tumor cells can 
induce xCT protein expression and contribute to ferroptosis 
resistance (27). In gliomas, the activation of the EGFR 
pathway can induce the expression of xCT and enhance 
the malignant potential of tumor cells (26). In the testis 
of Drosophila melanogaster, the activation of the EGFR 
pathway can support the lipid homeostasis in testicular stem 
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Figure 6 Vorinostat suppressed the expression of xCT in EGFR-activating mutant lung adenocarcinoma cells and EGFR-TKI-acquired 
drug-resistant lung adenocarcinoma cells. HCC827 (A), PC-9 (B), H1650 (C), H1993 (D), HCC4006 (E) and HCC827R (F) were divided 
into control group, Erastin (1 μM) group, Vorinostat group (HDAC inhibitor, 1 μM) and combination group (1 μM Vorinostat and 1 μM 
Erastin). After 24 hours of treatment, the proteins were collected for the Western Blot test. As shown in the figure, Vorinostat alone 
decreased the expression of xCT in HCC827, HCC4006, PC-9, H1650, H1993, and HCC827R cells, and the expression of xCT protein 
in these cells was increased after being treated with Erastin alone, while Erastin combined with Vorinostat reversed the increase of xCT 
expression induced by Erastin. EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor.

cells by enhancing autophagy. However, cysteine deficiency 
causes EGFR mutant human breast cancer cells to be 
more sensitive to ROS-dependent ferroptosis (29), and 
the activation of EGFR-MMP3-Rac1b and EGFR-Rac1-
NOX2 pathways can lead to an increase of intrinsic ROS 
(53-55). Therefore, it can be reasonably inferred that in 
LUAD cell lines which are sensitive or resistance to EGFR-
TKIs, the inactivation of the lipid peroxide reduction 
system will irreversibly increase the level of lipid peroxide 
and enhance the sensitivity of cells to ferroptosis induction, 
as already shown in breast cancer (29).

To verify our inference, we first evaluated the efficiency 
of ferroptosis inducers, Erastin and RSL3, on the intrinsic 
and acquired EGFR-TKI resistant LUAD cells and found 
that ferroptosis inducers at lower than conventional 
doses could significantly inhibit the cell proliferation of 
them. These results suggested that ferroptosis induction 
could be used to treat intrinsic or acquired EGFR-TKI-
resistant LUAD. To further dissect the therapeutic effect of 
ferroptosis inducers, we also screened potential drugs that 
could enhance tumor sensitivity to ferroptosis by combining 
WGCNA analysis and Connectivity Map techniques. 

Among all the drugs with P<0.05, the antitumor drug 
Vorinostat, already clinical used (56,57), had the highest 
specificity. By cytological experiments, we identified that 
Vorinostat significantly enhanced the ferroptosis induction 
effect of Erastin and the promoting effect of Vorinostat on 
ferroptosis was related to the inhibition of the expression of 
xCT, the key protein regulating ferroptosis. 

Also, some literature showed that Vorinostat could 
increase the production of reactive oxidative species 
(ROS) (58-60), while the increase of intracellular ROS 
could promote lipid auto-oxidation (61) and enhance the 
sensitivity of tumor cells to ferroptosis. In cancer cells 
exposed to Erastin treatment, a compensatory upregulation 
of SCL7A11 can be observed (62). In our study, we found 
that HDAC inhibitor Vorinostat could downregulate 
SLC7A11, thus blocking the compensatory upregulation 
of SCL7A11 induced by Erastin treatment, consequently 
enhancing the treatment effect of Erastin.

Consistent with our findings, Zang et al. showed that 
Vorinostat monotherapy can significantly overcome lung 
cancer cells’ resistance to the first, second, and third-
generation EGFR-TKI (48). However, another clinical 
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trial showed that the addition of Vorinostat to erlotinib 
failed to add clinical benefit when trialed in patients with 
EGFR mutated advanced LUAD, previously treated with 
erlotinib, however, this study contained patients with T790M 
mutations which would not be expected to derive benefit 
from this combination. Its addition to osimertinib at the time 
of progressive disease, or to prevent intrinsic or acquired 
resistance, has not been studied in a clinical setting (63).

Meanwhile, our study had a number of limitations. 
First, our experiments were limited to in vitro scenarios and 
further studies should be performed in vivo. Second, we did 
not verify the efficacy of ferroptosis induction to overcome 
intrinsic and acquired EGFR-TKI resistance in LUAD 
patients. Third, limited panel of cell lines were analyzed. 
Fourth, we didn’t use EGFR wild type LUAD cell lines as 
control groups.

In conclusion, this study proved Vorinostat downregulated 
the expression of xCT in EGFR mutant LUAD cells and 
enhanced the effect of ferroptosis induction therapy. 
Therefore, the combination of Vorinostat (or another 
HDACi) and an established therapy that limits glutathione 
import or production shows a certain therapeutic prospect in 
treating EGFR-TKI resistant LUAD. Risk-benefit balance 
should be carefully considered before using this combination 
in patients due to the potential high toxicity of it.
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