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Abstract: Lung cancer is the number one cause of cancer related mortality with over 1 million cancer 
deaths worldwide. Numerous therapies have been developed for the treatment of lung cancer including 
radiation, cytotoxic chemotherapy and targeted therapies. Histology, stage of presentation and molecular 
aberrations are main determinants of prognosis and treatment strategy. Despite the advances that have 
been made, overall prognosis for lung cancer patients remains dismal. Chemotherapy and/or targeted 
therapy yield objective response rates of about 35% to 60% in advanced stage non-small cell lung cancer 
(NSCLC). Even with good initial responses, median overall survival of is limited to about 12 months. 
This reflects that current therapies are not universally effective and resistance develops quickly. Multiple 
mechanisms of resistance have been proposed and the MET/HGF axis is a potential key contributor. The 
proto-oncogene MET (mesenchymal-epithelial transition factor gene) and its ligand hepatocyte growth 
factor (HGF) interact and activate downstream signaling via the mitogen-activated protein kinase (ERK/
MAPK) pathway and the phosphatidylinositol 3-kinase (PI3K/AKT) pathways that regulate gene expression 
that promotes carcinogenesis. Aberrant MET/HGF signaling promotes emergence of an oncogenic 
phenotype by promoting cellular proliferation, survival, migration, invasion and angiogenesis. The MET/
HGF axis has been implicated in various tumor types including lung cancers and is associated with adverse 
clinicopathological profile and poor outcomes. 

The MET/HGF axis plays a major role in development of radioresistance and chemoresistance to 
platinums, taxanes, camtothecins and anthracyclines by inhibiting apoptosis via activation of PI3K-AKT 
pathway. DNA damage from these agents induces MET and/or HGF expression. Another resistance 
mechanism is inhibition of chemoradiation induced translocation of apoptosis-inducing factor (AIF) thereby 
preventing apoptosis. Furthermore, this MET/HGF axis interacts with other oncogenic signaling pathways 
such as the epidermal growth factor receptor (EGFR) pathway and the vascular endothelial growth factor 
receptor (VEGFR) pathway. This functional cross-talk forms the basis for the role of MET/HGF axis in 
resistance against anti-EGFR and anti-VEGF targeted therapies. MET and/or HGF overexpression from 
gene amplification and activation are mechanisms of resistance to cetuximab and EGFR-TKIs. VEGF 
inhibition promotes hypoxia induced transcriptional activation of MET proto-oncogene that promotes 
angiogenesis and confers resistance to anti-angiogenic therapy. An extensive understanding of these 
resistance mechanisms is essential to design combinations with enhanced cytotoxic effects. 

Lung cancer treatment is challenging. Current therapies have limited efficacy due to primary and acquired 
resistance. The MET/HGF axis plays a key role in development of this resistance. Combining MET/HGF 
inhibitors with chemotherapy, radiotherapy and targeted therapy holds promise for improving outcomes. 
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Lung cancer: present-day portrait 

Epidemiology

As per 2008 estimates, lung cancer accounts for 1.6 million new 
cancer cases (13% of all new cancers) and about 1.4 million 
cancer deaths (18% of all cancer deaths) worldwide, making 
it the number one cause of cancer related mortality (1). In the 
United States alone, about 226,160 new lung cancer cases 
and about 160,340 lung cancer deaths are estimated to occur 
in 2012 (2). About 85% of all lung cancers are histologically 
non-small cell lung cancers (NSCLC) and 15% are small-cell 
lung cancers (SCLC) (3). As per incidence statistics of 1990-
2000 and 2000-2009, 40-80% of all NSCLC are localized 
and the remaining present as either advanced loco-regional 
disease or with distant metastasis [National Cancer Institute: 
Surveillance Epidemiology and End Results (NCI: SEER) 
(seer.cancer.gov)] (4,5). Similarly, 40% of patients with SCLC 
are staged with limited-stage disease and 60% are staged with 
extensive-stage disease (6). 

Contemporary therapies

The treatment of lung cancer is multifaceted and involves 
a complex interplay of surgery, radiation, cytotoxic 
chemotherapy and targeted therapies (5). Accurate staging 
and stage dependent multidisciplinary care is paramount 
to improved patient outcomes. The distinction between 
NSCLC and SCLC guides treatment and prognosis. In 
NSCLC, although complete surgical resection can result 
in long-term survival, a significant majority of patients, 
50% with stage IB and 70% of stage II, recur (5). Addition 
of adjuvant platinum-based chemotherapy demonstrated 
improved survival in early stage NSCLC (7). Radiation 
therapy is employed for treatment of NSCLC in both 
the palliative setting and for definitive management of 
unresectable non-metastatic disease either alone or with 
concurrent chemotherapy (8-10). Palliative systemic 
therapy in patients with stage IV NSCLC with either 
disseminated metastases or malignant effusions is 
enhanced by molecular characterization including 
mutational profiles. Cytotoxic chemotherapy forms the 
backbone of therapy for NSCLC (11). Active agents against 
NSCLC are platinum compounds (cisplatin, carboplatin), 
taxanes (paclitaxel, docetaxel), vinorelbine, gemcitabine 
and pemetrexed (11-13). Multiple targeted agents have 
also demonstrated activity in metastatic NSCLC. Tumors 
that exhibit anaplastic lymphoma kinase (ALK) fusions 
and epidermal growth factor receptor (EGFR) mutations 

are treated with ALK inhibitor (Crizotinib) and EGFR 
inhibitor (erlotinib), respectively (14,15). Targeted agents 
such as bevacizumab against vascular endothelial growth 
factor (VEGF) and cetuximab against EGFR in combination 
with chemotherapy doublets have shown a significant 
survival benefit in NSCLC (16,17). The management of 
limited-stage SCLC (LS-SCLC) involves combination 
chemotherapy with a platinum-based regimen (cisplatin/
carboplatin and etoposide/irinotecan/epirubicin/topotecan) 
in conjunction with concurrent accelerated thoracic radiation 
therapy, while extensive-stage SCLC (ES-SCLC) is treated with, 
combination platinum-based chemotherapy (carboplatin and 
etoposide) alone (18-22). This treatment plan and combined 
modality approach can be tailored to individuals depending 
on patient specific factors such as age, performance status, 
pulmonary functions and comorbidities. 

Prognosis

Despite multiple available treatments the overall prognosis 
of lung cancer remains dismal. The clinical/pathological 
stage of disease presentation is the single most important 
prognostic determinant in lung cancer (4). In a large series of 
patients with NSCLC, median overall survival varied from 
about 60 months for clinical stage I disease to about 6 months 
for clinical stage IV disease (4). The 5-year overall survival rate 
for LS-SCLC and ES-SCLC is 4.8% and 2.3%, respectively. 
Median disease-free survival in stage I and II NSCLC 
after resection and adjuvant therapy is about 3 years (23). 
Response rates and median survival of patients with stage 
III NSCLC treated with concurrent chemoradiation are 
84% and 16.5 months, respectively (24). Patients receiving 
chemotherapy and/or targeted therapy in metastatic 
setting have objective response rates of about 35% and 
median survival of about 12.3 months (16). Similarly, 
response rates and median overall survival in ES-SCLC is 
60% and 11 months, respectively (19). 

These figures indicate that current therapies have limited 
efficacy and even when initial responses are seen, these are 
short lasting. Tackling primary and acquired resistance to 
existing therapies is a major challenge in improving patient 
outcomes in lung cancer. 

The MET/HGF pathway: an overview

Structure & function

The proto-oncogene cMET (mesenchymal-epithelial 
transition factor gene) is present on chromosome 7q31 
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and encodes for a receptor tyrosine kinase (RTK) (25). 
The MET receptor is a single-pass type I transmembrane 
disulfide-linked heterodimer protein, made of a short 
extracellular alpha-chain and a long transmembrane 
beta-chain (26,27). The beta-chain has an extracellular, 
a transmembrane and a cytoplasmic domain (26). The 
cytoplasmic portion of the beta-chain contains the kinase 
domain of the RTK and also the carboxy-terminal tail with 
the bidentate multifunctional docking site, essential for 
intracellular signaling (26,28). HGF or scatter factor (SF) 
has been identified as the ligand for the MET receptor (29). 
HGF is a heterodimer, composed of a large alpha-chain 
and a small beta-chain linked by disulfide bridges (26,30). 
The ligand HGF dimer binds to the N-terminal portion of 
MET and causes dimerization of MET receptors (31,32). 

The receptor-ligand interaction between MET and 
HGF, and the resultant dimerization ultimately lead to the 
activation of the intrinsic kinase activity of MET, which in-
turn phosphorylates the tyrosine residues at the carboxy-
terminal docking site (26). Phosphorylated MET (p-MET) 
networks with adaptor molecules such as Gab1 (GRB2-
associated-binding protein 1), Grb2 (Growth factor 
receptor-bound protein 2), SRC (Sarcoma non-receptor 
tyrosine kinase), SHIP-1 (SH2 domain-containing inositol 
5-phosphatase 1) and Shp2 (Src homology 2-domain-
containing protein tyrosine phosphatase-2) to mediate 
biological responses (26,33-36). These effector molecules 
then activate downstream oncogenic signaling that regulates 
gene expression via the mitogen-activated protein kinase 
(ERK/MAPK) pathway and the phosphatidylinositol 3-kinase 
(PI3K/AKT) pathways (Figure 1) (26,37,38). In addition to 
regulating gene expression, these effector molecules can alter 
cytoskeletal framework and cellular adhesion by modulating 
actin, catenin, integrins and cadherins via activation of the 
PAK1 (p21 Activated Kinase) (39). 

Role in tumorigenesis

A normally functioning and strongly regulated MET/HGF 
axis is essential for embryogenesis, liver regeneration and 
wound healing (26,40-42). However, aberrant MET/HGF 
signaling promotes survival and migration of cells and can 
result in tumor development and progression. The cellular 
responses to activation of the MET/HGF axis support 
emergence of an oncogenic phenotype by promoting 
cellular proliferation, survival, migration, invasion and 
angiogenesis (43-46). 

Aberrancy of the MET/HGF axis due to germline or 

somatic mutations has been implicated in various tumor 
types and linked with adverse clinicopathological profile 
and poor outcomes (26). The most frequent dysregulation 
in human cancers is due to over-expression of either the 
ligand HGF/SF or the receptor MET (47,48). Activating 
mutations of MET gene homologus to mutations seen in 
other RTKs are also seen but are uncommon (47,49). The 
MET/HGF pathway has been shown to be involved in 
carcinogenesis and progression of a variety of tumors such 
as head & neck squamous cell cancer, breast cancer and 
colon cancer (48,50-53). Aberrant MET/HGF expression in 
these tumors has also been shown to correlate with adverse 
clinicopathological factors such as higher grade, advanced 
stage and poor survival outcomes (50,54,55). The key role 
of MET/HGF in carcinogenesis has stimulated interest and 
investigation of the therapeutic potential of exploiting this 
axis for treatment of cancer (56,57). 

Impact in lung cancer

MET, phosphorylated MET and HGF are highly expressed 
in both NSCLC and SCLC and appear to correlate with a 
worse overall survival (58). Although, HGF and MET are 
expressed in normal lung, their expression is increased in 
tumor tissue (59). In NSCLC cell lines and tumor tissues 
MET protein expression correlates with higher pathological 
tumor stage and worse outcomes (60). HGF induced MET 
phosphorylation in MET mutant SCLC cell lines promotes 
proliferation, invasiveness and clonogenic growth and its 
inhibition counteracts these effects (61). In human clinical 
samples, MET and p-MET overexpression is seen in 54% 
and 43% of SCLCs and is a poor prognostic factor (61). 

This data has generated immense interest in therapeutic 
development of HGF/MET inhibition for lung cancer (56). 
Multiple clinical studies involving inhibition of MET/HGF 
axis are underway (62). 

The MET/HGF axis: signaling pathways & cross-
talk 

Normal cellular physiology is regulated by a composite array 
of well-ordered signaling pathways. These complex axes 
are comprised of ligands, cell surface membrane receptors 
and intracellular signal transduction molecules. Anomalies 
in several of such cellular signaling pathways have been 
implicated in lung carcinogenesis. These aberrations 
regulate abnormal cellular proliferation, survival, motility 
and angiogenesis and consequently stimulate tumor growth 
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and progression. Epidermal growth factor receptor 
(EGFR) pathway, vascular endothelial growth factor 
receptor (VEGFR) pathway and MET/HGF pathway 
are pathways of primary interest involved in lung cancer. 
A substantial functional cross-talk between the MET/
HGF axis and these other signaling pathways has been 
demonstrated both in vitro and in vivo (63) (Figure 1). 
These functional relationships and resultant cellular 
functions in cancer cells are principal mechanisms for 
cancer progression and therapeutic resistance to targeted 
therapies.

MET/HGF & EGFR

EGFR is a valid target in NSCLC and plays a crucial role 
in the biological behavior of these tumors (64). EGFR 
mutations are seen in 15% to 30% of NSCLCs and are 
associated with better survival and responsiveness to EGFR 
inhibition with erlotinib and gefitinib (65,66). There 
appears to be a reciprocal functional cross-talk between 
the MET and the EGFR pathways (Figure 1). Activation 
of EGFR by EGFR ligands can lead to HGF-independent 
phosphorylation and activation of MET (67). This trans-

Figure 1 Schematic representation of MET/HGF signaling and functional cross-talk with other pathways. Hepatocyte growth factor (HGF) 
binds to MET receptor and activates kinase activity which then phosphorylates the docking site and recruits effector molecules [Growth 
factor receptor-bound protein 2 (GRB2), GRB2-associated-binding protein 1 (GAB1), SRC homology 2 domain-containing phosphatase 
2 (SHP2), Son of sevenless-1 (SOS-1) and Sarcoma non-receptor tyrosine kinase (SRC)]. Downstream signaling pathways such as the 
Mitogen-activated protein kinase (ERK/MAPK) pathway, the Phosphatidylinositol 3 kinase (PI3K-AKT) pathway and the Phospholipase-
Cγ (PLC-γ) pathway are activated. These effector pathways are shared by the epidermal growth factor receptor (EGFR/EGF) pathway, the 
vascular epidermal growth factor (VEGFR-2/VEGF-A) pathway, the HER2 pathway and the EML4-ALK pathway. The signals affect gene 
expression and promote cell proliferation and survival, angiogenesis and cytoskeletal alterations resulting in cancer growth and progression. 
EGFR and HER2 can Trans-phosphorylate and activate MET. MET activation increases transcriptional expression of VEGF-A and WNT 
ligand and activates VEGF pathway and WNT-β-catenin pathway, respectively. β-catenin increases MET expression
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phosphorylation indicates close cooperation among the 
EGFR and MET axis and can in part be responsible for 
cellular responses to EGFR stimulation. Furthermore, 
activation of the MET/HGF axis can cause EGFR 
independent stimulation of EGFR related downstream 
signaling pathways such as mitogen-activated protein kinase 
(ERK/MAPK) pathway and the phosphatidylinositol 3 
kinase (PI3K-AKT) pathway (26). 

MET/HGF & VEGFR

VEGF is a potent angiogenic factor that regulates angiogenesis 
and has prognostic significance in NSCLC (68). Evidence 
supports the role of MET/HGF axis as being involved 
in regulation of angiogenesis and lymphangiogenesis by 
promoting endothelial cell growth, migration and capillary 
formation (44,69). The MET/HGF axis also induces 
expression of VEGF-A by activation of MEK and PI3K 
pathway (70). HGF signals induce transcriptional activation 
of VEGF by enhancing promoter activity (71). In addition 
to the direct effect on endothelial cells and induction of 
VEGF-A, the axis also suppresses Thrombospondin-1, 
which is a negative regulator of angiogenesis (72). Akin to 
the EGFR pathway, the VEGF pathway and the MET/
HGF axis also share a common assortment of downstream 
signaling pathways such as the MAPK pathway and the 
PI3K-AKT pathway (Figure 1). 

MET/HGF & other pathways

HER2 overexpression is seen in 30% of patients with 
NSCLC and portends poor prognosis (73). Both HER2 and 
MET downstream signaling involves the MAPK and the 
PI3K pathways and recent data in breast cancer suggests 
that MET/HGF expression is associated with an increased 
risk of failure from trastuzumab based therapy in HER2-
positive metastatic breast cancer (74). 

The Wnt-β-Catenin pathway has been shown to be 
associated with c-myc and survivin gene expressions 
and tumor proliferation leading to progression and 
development of more aggressive tumors in NSCLC (75). 
There is significant crosstalk between MET/HGF axis and 
β-catenin signaling. The MET/HGF stimulation increases 
transcription of WNT ligands which in-turn inhibits 
β-catenin degradation complex thereby promoting β-catenin 
nuclear targeting and gene expression (62). Moreover, 
MET/HGF activation can result in WNT-independent 
PI3K mediated activation of β-catenin signaling (76,77). 

Conversely, an active form of β-catenin increases 
transcription of MET expression (77). 

The ALK gene encodes for a receptor tyrosine kinase 
and the EML4-ALK fusion protein is a driver mutation in 
5% to 13% of NSCLCs (14,78). The ALK tyrosine kinase 
activates downstream signaling pathways such as MAPK 
and PI3K pathway analogous to MET/HGF and promotes 
proliferation, migration and inhibits apoptosis (79). These 
shared signaling pathways and extensive cross-talk are 
an important consideration while evaluating the possible 
mechanisms of resistance to targeted therapies. Crizotinib, 
is a combined ALK and MET inhibitor, and its efficacy in 
NSCLCs is indicative of feasibility and effectiveness of co-
inhibition of cooperating pathways (14,80). 

The MET/HGF axis: resistance mechanism to 
contemporary therapies

Although, our armamentarium of treatment strategies has 
grown immensely, success has been limited. One of the 
foremost reasons for failure of contemporary treatments 
in lung cancer is presence of inherent or development of 
acquired resistance in cancer cells. Multiple mechanisms 
of resistance have been identified in lung cancer and 
MET/HGF axis is one of the pivotal cellular pathways 
contributing to this therapeutic resistance (Figure 2). 

Chemotherapy

Platinum based therapy is the backbone of conventional 
cytotoxic chemotherapy for NSCLC in both adjuvant 
setting and metastatic setting (7,11). It is also used in 
chemoradiation as a radiosensitizer (8). Furthermore, 
platinum agents are employed as first line therapy for 
both limited-stage and extensive-stage SCLC (18,19). 
Taxanes are extensively used in treatment of NSCLC (16). 
Camptothecins such as irinotecan and topotecan show 
activity in both NSCLC and SCLC and are used either as 
single agents or in combination with cisplatin/carboplatin 
(20,21,81,82). Anthracycline drugs such as epirubicin and 
etoposide are used in treatment of ES-SCLC (21,22). 
Development of chemotherapy-resistant phenotype is a 
principal cause of treatment failure in lung cancer. 

MET/HGF axis has been frequently implicated in 
development of chemoresistance in multiple tumor types 
(Figure 2). Cytotoxicity in human glioblastoma tumor cell 
lines from gamma irradiation, cisplatin, camptothecin, 
Adriamycin and taxanes has been shown to be partially 
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abolished by pretreatment with recombinant HGF 
in vitro (83). This cytoprotective effect from HGF is a 
result of inhibition of apoptosis, mediated by MET/HGF 
signaling that activates PI3K-AKT pathway (83). Studies 
have also demonstrated that HGF transfected Chinese 
hamster ovary cells are resistant to treatment with cytotoxic 
DNA damaging agents such as Adriamycin and irinotecan. 
The increased cell viability was the result of decreased 
apoptotic cell death induced by these agents indicating the 
protective effect of HGF against programmed cell death 
following DNA damage (84). Rhabdomyosarcoma cell lines 
overexpressing HGF and MET exhibit increased survival 

even on exposure to chemotherapy (85). 
Mult ip le  mechanisms of  MET/HGF induced-

chemoresistance have been proposed (Figure 2). Most 
cytotoxic agents promote apoptosis through programmed 
cell death (86). The MET/HGF axis down-regulates the 
expression of anti-apoptotic protein Bcl-XL (87). MET/
HGF also inhibits N-methyl-d-aspartate (NMDA)-induced 
activation of caspase 3 and NMDA-induced apoptosis-
inducing factor (AIF) translocation from mitochondria to 
nucleus thereby preventing NMDA-induced cell death 
in cultured hippocampal neurons (88). Similarly, HGF 
suppresses AIF expression through activation of FAK and 

Figure 2 Schematic representation of mechanisms of resistance due to MET/HGF pathway and potential interventional strategies. 
Chemotherapy and radiotherapy damage DNA which in-turn increases nuclear factor kappa B (NF-κB) mediated increased expression 
of HGF and MET. MET [I] and/or HGF [II] over-expression are major mechanisms of resistance due to MET/HGF axis against 
contemporary therapies. VEGF inhibition can cause hypoxia and increased hypoxia-inducible factor-alpha (HIF-α) mediated HGF and 
MET expression. Rarely, mutations in the kinase domain [III] can cause constitutional activation of MET signaling and contribute to 
increased resistance. In gefitinib, erlotinib, cetuximab and bevacizumab resistant tumors, MET/HGF activates oncogenic signaling via 
Mitogen-activated protein kinase (ERK/MAPK) pathway, the Phosphatidylinositol 3 kinase (PI3K-AKT) pathway and the Phospholipase-
Cγ (PLC-γ) pathway. The MET/HGF inhibition by HGF antagonists [A], anti-MET antibody [B] or small molecule receptor tyrosine 
kinase inhibitor (SmRTKI) [C] can help overcome resistance

Beyaclzumab
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induces cisplatin resistance in lung cancer cell lines (89). 
Additionally, DNA damaging agents such as Adriamycin, 
camtothecins, cisplatin and etoposide induce translocation 
of AIF, a mitochondrial effector of apoptotic cell death, 
from mitochondria to nucleus (90). A possible mechanism 
for this translocation is activation of poly (ADP-ribose) 
polymerase-1 (PARP-1), which protects the genome by 
functioning as a DNA damage surveillance network, by 
DNA damaging agents (91). PARP-1 activation induces 
translocation of AIF which induces caspase-independent 
chromatin condensation and DNA fragmentation (91-93). 
AIF-mediated apoptotic death is critical for treatment effect 
in NSCLC cell lines (94). MET/HGF mediated inhibition 
of AIF is therefore a potential mechanism for resistance to 
cytotoxic chemotherapy in lung cancer. 

This data illustrates a vital role of the MET/HGF 
axis in conferring chemoresistance to common cytotoxic 
chemotherapy in lung cancer. MET/HGF inhibition can 
therefore be used strategically to overcome chemoresistance 
and improve response rates and survival outcomes with 
conventional chemotherapy. 

Radiation

Radiotherapy forms the cornerstone of combined-modality 
therapy for unresectable stage III NSCLC and LS-SCLC 
(19,95). In NSCLC, complete response (CR) rate with 
concurrent chemoradiotherapy is about 40% and 5-year OS 
is about 16% (8). Similarly, SCLC, which is radiosensitive 
tumor, CR rate with concurrent chemoradiation is about 
50% and median OS is about 2 years (96). Radiotherapy 
resistance is a probable mechanism for these sub-optimal 
response rates and recurrent disease despite aggressive 
treatment.

Radiation causes DNA damage and the resultant cellular 
radiosensitivity in cancers is a function of activation of 
apoptotic programmed cell death (97,98). Therefore, 
acquired cellular insensitivity to radiation therapy is in 
part caused by activation of anti-apoptotic signals such as 
the PI3K/AKT pathway (99). Notably, the PI3K/AKT 
pathway can also be activated by MET/HGF signaling 
(26,99). Additionally, radiation induced hypoxia can cause 
transcriptional activation of MET proto-oncogene (100). 
This effect is mediated by initial recognition of radiation-
induced DNA damage by the ATM protein kinase, which 
in turn activates nuclear-factor kappa B (NF-κB) (101). The 
NF-κB binds to the MET promoter and increases MET 
expression (Figure 2) (101). 

Multiple studies have corroborated stimulation of 
MET/HGF axis by radiation. In human malignant 
glioma cell lines, radiation exposure leads to a dose-
dependent increase of HGF levels and development of 
radioresistance (102). In lung cancer and pancreatic cell 
lines, gamma-radiation leads to substantially increased 
MET expression and phosphorylation (101,103). HGF 
ligand in presence of such upregulated MET receptors 
abolishes radiation-compromised cell migration and 
can lead to emergence of metastatic phenotypes (103). 
The overexpressed MET receptor in such irradiated cell 
lines possesses constitutively activated kinase activity 
and phosphorylation as well as increased sensitivity to 
HGF ligand (101). These results were reproduced in a 
panel of neuroblastoma cell lines, which when exposed to 
radiation showed enhanced HGF mRNA expression and 
MET receptor amplification (104). Both ligand-dependent 
and ligand-independent phosphorylation of MET was 
seen in such cell lines (104). Similarly, HGF and MET 
overexpression has also been shown to increase survival in 
rhabdomyosarcoma cell lines exposed to radiotherapy (85). 
This data illustrates the importance of MET/HGF in 
development of acquired resistance to radiotherapy (101). 

The presence of residual disease after radiation therapy 
and disease relapse after initial responses indicates 
emergence of radio-resistant cancer cells and MET/HGF 
appears to play a significant role in this phenomenon. 
Radiotherapy in combination with MET/HGF inhibition, 
used as a radiosensitizer, is hence a promising therapeutic 
partnership. 

Targeted therapies

Systemic palliative management of metastatic NSCLC is 
individualized based on mutational profile of the tumors. 
The molecular characterization to date involves evaluating 
for mutations against which, efficacious targeted therapies 
are available and include EGFR mutations or expression 
(erlotinib, gefitinib, and cetuximab) and EML/ALK4 
rearrangement (crizotinib) (14,15,17). Bevacizumab 
in combination with chemotherapy improves survival 
in adenocarcinomas (16). However, responses are still 
restricted and disease progression occurs invariably. 
Despite the sound scientific rationale of anti-angiogenesis, 
the 2 months improvement in overall survival with addition 
of bevacizumab to chemotherapy in the E4599 trial was not 
duplicated in the AVAiL trial (16,105). Similarly, increase in 
response rates to addition of cetuximab in EGFR expressing 
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tumors was only about 20% and median OS improved 
by about 1.2 months (17). Although, gefitinib therapy in 
WJTOG3405 trial was associated with a response rate of 
60%, the progression-free survival was only increased by 
3 months (106). As is evident from above data, a majority 
of patients initially respond to targeted therapies but 
subsequently develop disease progression possibly as a result 
of emergence of acquired resistance and alterations in the 
MET/HGF signaling cascade appear to be a key player in 
this phenomenon (Figure 2). 

EGFR inhibition resistance

The functional cross-talk between the EGFR and MET 
pathway is clinically significant and is probably responsible 
for both primary and acquired resistance against EGFR 
directed therapies in lung cancer. It has been established 
that dual receptor activation of cell lines co-expressing 
EGFR and MET, results in increased proliferation of such 
cell lines (107). 

Although, EGFR expression is common in lung cancers, 
only a minority of patients respond to cetuximab due to 
presence of primary resistance and most of those who 
respond do so only transiently due to acquired resistance. 
Increased MET/HGF activity is a possible mechanism of 
this resistance. Cells previously treated with cetuximab, 
when cultured with HGF exhibit MET phosphorylation 
and revamped stimulation of downstream effector pathways 
(MAPK and PI3K/AKT) which restore cell proliferation 
and prevents apoptosis (107). Similarly, patient-derived 
xenografts from NSCLC demonstrated that MET 
overexpression from gene amplification and activation is a 
major mechanism of primary cetuximab resistance (108). 
The HGF induced resistance to cetuximab is seen regardless 
of EGFR gene status in both wild-type and mutant EGFR 
cells (109). 

Small molecule EGFR tyrosine kinase inhibitor such as 
gefitinib, are effective in NSCLC and act via reduction of 
ErbB-3 mediated PI3K/AKT growth signaling (110). Both 
primary and secondary resistance mechanisms to EGFR-
TKIs in NSCLC have been described (111). Although, 
secondary T790M mutation in EGFR is the most common 
cause (50%) of acquired resistance to EGFR-TKIs, multiple 
other pathways are also involved (112,113). MET/HGF 
has been identified as a novel mechanism of resistance 
to EGFR-TKIs (114). Only about 10% of unselected 
NSCLC patients respond to EGFR-TKIs and strong 
MET membrane immunoreactivity has been shown to 

be associated with progressive disease and shorter time to 
progression and thus may be regarded as marker of primary 
gefitinib resistance in NSCLC patients (115). MET/
HGF signaling activates PI3K/AKT pathway and may 
contribute to gefitinib resistance using this downstream 
effector pathway (26). Study with a gefitinib-sensitive lung 
cancer cell line demonstrated that acquired resistance to 
gefitinib develops as a result of focal amplification of the 
MET proto-oncogene (116). MET amplification is seen in 
22% of lung cancer specimens that develop resistance to 
gefitinib or erlotinib possibly due to re-activation of PI3K 
pathway (116). Similarly, HGF-mediated MET activation 
has also been shown to confer gefitinib resistance in lung 
adenocarcinomas (117). 

VEGFR inhibition resistance

Bevacizumab in combination with chemotherapy is used in 
NSCLC and improves response rates but these responses 
are not universal and often short lived (16). The MET/
HGF axis promotes angiogenesis by promoting endothelial 
cell growth, migration and capillary formation, induces 
expression of VEGF-A and suppresses Thrombospondin-1 
thereby contributing to resistance against VEGF inhibition 
(44,70,72). Hypoxia promotes transcriptional activation of 
MET (100). Dual inhibition of MET and VEGFR-2 has 
demonstrated strong inhibition of tumor growth and tumor 
angiogenesis in xenograft models (118). 

Others

Multiple molecular pathways have been shown to be 
involved in carcinogenesis of lung neoplasms. The limited 
single-agent clinical activity demonstrated by several 
targeted agents in lung cancer begs the question that, 
are there intrinsic resistance pathways that overcome 
single pathway inhibit ions? Understanding these 
resistance mechanisms is essential to hypothesize rational 
combinations that would enhance cytotoxic effects and 
exploit the full potential of targeted therapies. 

HER2 expression is seen in 30% of NSCLCs and 25% 
of SCLCs and is associated with poor prognosis (73,119). 
HER2 overexpression in NSCLC is also a marker for 
multidrug resistance (120). Anti-Her2 therapy has shown 
significant anti-tumor effect against NSCLC, both in 
vivo and in vitro (121,122). However, multiple trials of 
trastuzumab in NSCLC have failed to show any significant 
clinical activity (123,124). MET expression has been shown 
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to contribute to trastuzumab resistance in breast cancer 
and could be a factor contributing to suboptimal responses 
to trastuzumab in NSCLC (124,125). Anti-Her2 therapy 
could be therapeutic strategy in NSCLC due to significant 
expression seen in NSCLC and also since HER2 expression 
can contribute to angiogenesis by enhancing VEGF 
secretion (126). 

Histone deacetylase 1 (HDAC1) expression in lung cancer 
is associated with poor 5-year disease-free survival rate (127). 
Histone deacetylase inhibitors such as vorinostat can induce 
tumor cell growth arrest, differentiation and apoptosis. A 
phase II trial of vorinostat carboplatin plus paclitaxel showed 
increased response rate with vorinostat (128). HDAC 
regulates chromatin remodeling and down-regulates 
transcription of miR-449, which is an inhibitor of MET 
expression (129). MET/HGF overexpression can therefore 
potentially lead to resistance against HDAC inhibitors. 

Future
 

General

Treating lung cancer has been a daunting task. A myriad 
of therapies are available but outcomes remain below par. 
Molecular characterization of lung cancer has taught us that 
this disease is heterogeneous and that molecular pathology 
guides prognosis and response to therapy. The MET/
HGF pathway has been identified as a novel driver of lung 
carcinogenesis. Besides its role as a mitogen, motogen and 
angiogen, MET/HGF also plays a key role in both primary 
and acquired resistance to contemporary therapies. The 
potential role of the MET/HGF axis as a predictive and 
prognostic marker needs further exploration. 

Potential for therapeutic interventions 

MET/HGF axis has recently emerged as a potential 
therapeutic  target  and mult iple agents  including 
monoclonal antibodies to either the MET receptor or HGF 
and small molecular tyrosine kinase inhibitors against MET 
RTK are being investigated (130). Recognition of the role 
of MET/HGF axis as a potent resistance mechanism has 
steered interest in development of therapeutic strategies 
using MET/HGF inhibition to overcome resistance to 
contemporary therapies in lung cancer (131). 

Inhibition of the MET receptor by gene transfer in 
tumor cell lines inhibits the cytoprotective anti-apoptotic 
effect of HGF against DNA-damaging agents such as 

gamma irradiation, cisplatin, camptothecin, Adriamycin and 
taxanes (83). Combination of MET/HGF inhibitors with 
chemotherapy can possibly improve tumoricidal activity of 
cytotoxic chemotherapy and improve response rates and 
outcomes. 

Viability of irradiated radio-resistant tumor cell lines treated 
with MET inhibitor is reduced dramatically after irradiation 
as a result of increased caspase-3 mediated apoptosis (101). 
Moreover, treatment with MET inhibitor decreased 
proliferative capacity of cells that survived irradiation (101). 
Xenografts using these cell lines showed a significant decrease 
in tumors when treated with radiation and MET inhibition 
as compared to radiation alone (101). Recombinant HGF 
antagonist can block enhanced malignant potential of tumors 
by radiation-induced MET/HGF amplification thereby 
improving the efficacy of radiotherapy (103). Similarly, 
targeting endogenous expression of HGF and MET in 
human malignant glioma cells and xenografts sensitizes cells 
to gamma-radiation and enhances radiation-induced caspase-
dependent cytotoxicity (132). These studies provide proof 
of concept regarding synergistic antitumor response of 
radiation and MET/HGF inhibition (132). 

MET inhibition by selective tyrosine kinase inhibitors 
or downregulation of MET expression by a specific siRNA 
has been shown to abolish the HGF induced cetuximab 
resistance in cell lines and restore growth-inhibitory 
effects of cetuximab (107). MET knockdown not only restores 
cetuximab resistance but also reduces EGF stimulated EGFR 
phosphorylation (108). Cetuximab resistance due to HGF can 
also be abrogated by treatment with anti-HGF neutralizing 
antibody (109). HGF mediated resistance to gefitinib in lung 
cancer cell lines can be reversed by down-regulation of MET 
expression by MET-specific siRNA (117). HGF induced 
hyposensitivity to EGFR-TKI can be abrogated by treatment 
with anti-HGF neutralizing antibody, HGF antagonist or 
MET-TKI (114). A phase II trial of ARQ197 plus erlotinib, 
a small molecule inhibitor of MET receptor, in NSCLC 
showed evidence of activity with this combination (133). As 
a result of this trial, MARQUEE, a phase III, randomized, 
placebo-controlled study has been initiated in NSCLC 
patients with the rationale that dual inhibition of MET and 
EGFR may overcome resistance to EGFR inhibitors (134). 
Therapy with MET/HGF inhibitors and EGFR inhibitors 
hold promise for select patients who either fail to respond 
to anti-EGFR therapy or acquire resistance after an initial 
response.

Combined MET and VEGF inhibition has been shown 
to be effective in inducing tumor regression and also in 
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overcoming HGF-induced EGFR-TKI resistance (118,135). 
Valproic acid, a HDAC inhibitor, has been shown to 
inhibit HGF expression and HGF mediated invasion in 
hepatocellular carcinoma cells (136). Additionally, SCLC 
cell lines exposed to HDAC inhibitors and topoisomerase 
inhibitors showed an additive-synergistic response and 
decreased cell viability (137). Triple target inhibition 
using combination of MET, EGFR and Her2 inhibitors 
has illustrated that even though each drug alone was not 
very effective, the combination resulted in a synergistic 
inhibition of proliferation and more cytotoxicity (138). 
MET inhibition has been shown to restore sensitivity to 
anti-Her2 in cell lines (138). The existing data provides 
a conceptual framework for combining various targeted 
therapies with MET/HGF inhibitors to improve tumor kill. 

MET/HGF has the potential to emerge in future 
as a chief molecular target that can be manipulated 
pharmacologically to increase tumor-cell cytotoxicity. 
Combined treatments of MET/HGF inhibitors and other 
contemporary therapies in selected lung cancer patients 
could result in pronounced clinical benefits. 
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