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Introduction

Lung cancer is the leading cause of cancer-related deaths 
worldwide, incidence and mortality rates of lung cancer 
have been ballooning in recent years. The etiologic factors 
of lung cancer have become more complex along with 
environmental pollution, urbanization, and industrialization 
problems around the world. In 2018, it is estimated that 
2.09 million new cases of lung cancer (11.6% of total cancer 
cases) and 1.76 million of death cause by lung cancer (18.4% 
of total cancer death) occurred all over the world, ranking 
first in the most frequent cancer and cause of cancer death 
among all cancer types, in combined of men and women (1). 

The American Cancer Society’s estimates that fresh cases of 
lung cancer in the United States for 2020 are about 228,820 
(116,300 in men and 112,520 in women) and 135,720 
deaths from lung cancer in 2020 (72,500 in men and 63,220 
in women) (2).

Histologically, lung cancer could be categorized into two 
subtypes, small-cell lung cancer (SCLC) and non-small-cell 
lung cancer (NSCLC). The World Health Organization 
(WHO) has classified NSCLC into adenocarcinoma, 
squamous cell carcinoma and large cell carcinoma (3). 
Surgery is still recommended for patients with early 
stages of NSCLC, while platinum-based chemotherapy or 
molecular targeted drugs remains the first-line treatment 
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for advanced stages (4). However, the 5-year survival rate 
is still considered low (<7%) (5). SCLC, accounts for 
approximately 14% of all lung cancers, highly metastatic 
and rapid growth contribute SCLC to a high mortality rate 
and low survival rate, most patients survive for only a year 
or less (6). Thus, it is rarely possible for surgical resection, 
chemotherapy and/or radiotherapy became the remaining 
options. Although the combination of radiotherapy with 
either surgery or chemotherapy treatment proven could 
improve the survival of SCLC patients (7,8), still, the 
general 5-year survival rate of people with SCLC patients is 
6% (5).

Clusterin (CLU), also known as apolipoprotein J, 
testosterone-repressed prostate message-2 (TPRM-2), 
sulphated glycoprotein-2 (SGP-2) and compliment lysis 
inhibitor (CLI), was first isolated from ram rete testes fluid 
in 1986, they showed that a heat-stable, trypsin sensitive 
protein was responsible to aggregate cells, so they named 
this extracellular cell ‘Clusterin’ (9). CLU is a highly 
conserved glycoprotein found nearly ubiquitous in tissues 
and body fluids (10). In human, CLU was described as CLI 
in 1989 firstly, a component of soluble terminal complement 
complexes immunologically identified in human seminal 
plasma, playing an important role in protecting sperm cells 
and epithelial tissues against complement attack in the male 
reproductive system (11). Since then, CLU has been found 
implicated in many processes, which included apoptosis, cell 
cycle regulation and DNA repair (12-16). 

Several studies have reported high expression of CLU 
in different lung cancer cell lines (17,18). Compared to 
normal lung cancer cells, CLU expression was found higher 
in drug-resistant lung cancer cell lines, which indicates that 
CLU might be involved in drug resistant. Moreover, CLU 
could also represent an independent prognostic factor in 
surgically resected lung cancer patients (19,20). 

In this review, we will firstly discuss the structure and 
physiology function of CLU, then about the role of CLU in 
tumorigenesis, metastasis, chemotherapy and radiotherapy 
in lung cancer.

The information used to write this review was collected 
from PUBMED database (date of the last search 14 March 
2021), using combinations of search terms including “lung 
cancer”, “clusterin”, “apolipoprotein J”, “chemotherapy”, 
“radiotherapy” and “antisense oligonucleotide”. Reference 
lists of identified articles were searched manually to find 
other relevant studies. We present the following article in 
accordance with the Narrative Review reporting checklist 
(available at http://dx.doi.org/10.21037/tlcr-20-1298).

Structure and biological function of CLU

Structure of CLU

Human CLUI predominant form is a secreted heterodimeric 
glycoprotein,  containing about 30% of N-linked 
carbohydrate rich in sialic acid. It is located at chromosome 
8p21-p12 and is organized in 8 introns and 9 exons of 
different size, resulting in a gene with a total length of 
17,876 bp (base pair) and is comprised of two disulfide-
linked subunits designated CLU 1 (34–36 kDa) and CLU 
2 (36–39 kDa), each containing three cysteines involved in 
disulfide bonds. The N-linked carbohydrate is the site of 
sulfation, with heterogeneity of glycosylation in different 
sites. When chemically deglycosylated, the subunits have 
molecular masses of 24 and 28 kDa, respectively. 

Several mRNAs isoforms have been transcribed from the 
alternative use of CLU gene exon 1, it involved into three 
different following portions: 1a, 1b and 1c, and they share 
the remaining exon 2 to 9 (21,22). The most extensively 
studied of the human CLU is the secretory CLU (sCLU), a 
75–80 kDa heterodimer present in almost all physiological 
fluids. Another isoform is the nuclear clusterin (nCLU), a 
55 kDa protein found inside the nucleus of the cell. The 
third isoform which remain poorly unknown, was found 
mostly in the cytoplasm, is the cytoplasmic clusterin  
(cCLU) (23,24).

Molecular function of CLU

Different studies confirmed this dichotomous role of CLU 
isoforms related to apoptosis. A possible link with apoptotic 
death was found a long time ago (25). Studies have been 
carried out investigating on this issue. Through exposing 
cancer cells to ionizing radiation (IR), the C-terminal 
coiled-coil domain of nCLU formed a complex with Ku70/
Ku80, resulting in reduction of cell growth and colony-
forming ability, concurrent with increased G1 cell cycle 
arrest and cell death (26). Another study revealed that 
interaction between nCLU and Bcl-XL resulted in releasing 
of Bax, promoted apoptosis accompanied by activation 
of caspase-3 and cytochrome c release (27). Leskov’s 
team (28) discovered that the N- and C-terminal coiled-
coil domain interact with each other, suggesting that this 
protein could dimerize or fold, however they both produce 
same contribution. All these results indicated that nCLU 
is a pro-apoptotic molecule, and the C-terminal coiled-coil 
domain was the minimal region required for Ku binding, 
in additional, Bax is the key molecule in nCLU induced-
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apoptosis mechanism.
Opposite from nCLU, sCLU impedes the activation of 

Bax by interfering the Ku-70-Bax complex in mitochondria, 
which leads to the release of cytochrome c and caspase-3. 
Ku-70-Bax complex was stabilized as sCLU binds to it in 
the cytoplasm, suppressing Bax activation and relocation 
to mitochondria. Moreover, sCLU also cooperated with 
c-Myc, which confers cancer cells the ability of proliferation 
and progression in vivo (14,29). Another research revealed 
that high levels of sCLU upregulated the expression of 
megalin, also known as low density lipoprotein-related 
protein 2 (LRP-2) which results in the phosphorylation 
of Akt. Subsequently, activated Akt caused a decreasing of 
cytochrome c released by inducing the phosphorylation 
of Bad. This implicates sCLU PI3K/AKT axis and its 
receptor megalin protects cancer cells against tumor 
necrosis factor-α (TNF-α) induced apoptosis (30,31). Apart 
from that, PI3K/AKT/NF-κB pathway also involved in the 
matrix metallopeptidase 9 (MMP-9) activation together 
with ERK1/2 signaling pathway. The authors hypothesis 
that CLU regulates extracellular matrix (ECM) remodeling 
through increasing MMP-9 expression in macrophages 
during tumor cell invasion, inflammation, and/or tissue 
remodeling (32). Interestingly, through stabilizing the 
inhibitor IκB, sCLU regulates NF-κB activity in a 
negative manner, resulting in suppression of tumor cell  
motility (33,34). 

The growth and metastasis of a neoplasm also required 
formation of adequate vascular support (35). In vitro, Fu’s 
team (36) found out that high levels of sCLU seem to 
correlate with tumor angiogenesis through inducing the 
expression of vascular endothelial growth factor (VEGF). 
Deficiency of sCLU protein after using far-infrared (FIR) 
radiation or antisense oligonucleotides (ASO’s) could lead 
to effective inhibition of angiogenesis (37,38). Besides that, 
sCLU was also discovered having activity similar to small 
heat shock protein, conferring cellular protection against 
both heat shock and oxidative stress in order to prevent 
protein precipitation and protect cells from heat and other 
stresses. To sum up, both heat shock and oxidative stress 
could induce expression of sCLU mRNA, results in highly 
sensitive to apoptotic cell death (39-41).

Ubiquitination, sometimes referred as the molecular 
“kiss of death” for a protein, is a three steps enzymatic 
process that involves the bonding of a ubiquitin protein to 
a substrate protein (42). The entire process requires three 
types of essential enzymes, which is E1 ubiquitin-activating 
enzyme, E2 ubiquitin-conjugating enzyme and E3 

ubiquitin ligases. This process could affect proteins in many 
ways, including tagging them for proteasome mediated 
degradation, promote or prevent protein interaction, alter 
their location inside a cell (43). There is a study reported 
that sCLU increases nuclear factor κB (NF-κB) nuclear 
translocation and transcriptional activity by serving as a 
ubiquitin-binding protein, which could promote survival 
of prostate cancer cell as a result of enhancing COMMD1 
and I-κB proteasomal degradation by interacting with 
members of the SCF-beta-transducin repeat-containing 
protein (SCF-βTrCP) E3 ligase family (44). To sum up, 
CLU could act as a ubiquitin-like protein to determine the 
survival of prostate cancer cells. More studies are required 
to investigate functions of this ubiquitin-like protein and 
the involved mechanisms in NSCLC.

All these evidences shows that the following are the 
physiological functions of sCLU: (I) inhibit the activation 
of Bax by stabilizing Bax-Ku70; (II) activated the PI3K/
AKT survival pathway which promote cancer cells survival; 
(III) stabilizing IκB which inhibit NF-κB activity, results 
in suppression of tumor cell; (IV) participate in tumor 
angiogenesis; (V) a cytoprotective chaperone having 
function similar to small heat shock protein; (VI) plays a 
role of an ubiquitin-like protein and controls the survival of 
cancer cells. Molecular function of CLU was illustrated in 
Figure 1.

CLU and tumorigenesis 

Expression of CLU also been investigated and widely 
reported overexpression in various types of cancer including 
gastric cancer (45), prostate (46), breast (47), lung (48) and 
melanoma (49). High level of sCLU was significantly related 
to advanced tumor pathological stage and grade in cancer, 
as well as low recurrence-free survival patients (50,51). 
Numerous studies also certify that CLU as a promising useful 
biomarker in different types of cancer including esophageal 
cancer (52), hepatocellular carcinoma (53), colorectal  
cancer (54), osteosarcoma (55), ovarian cancer (56), 
prostate cancer (57) and gastric cancer (58). Using 
immunohistochemical observation on surgical colon 
specimens, Pucci et al. (59) discovered the distribution of 
cytoplasmic CLU was associated with the progression of 
carcinoma towards high-grade and metastatic, concluded 
that CLU was related to tumor progression. Another study 
also reported that CLU could promote the progression of 
Hepatitis C virus (HCV)-related hepatocellular carcinoma 
(HCC) by regulating autophagy (60). Therefore, CLU 
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overexpression in solid tumor has become a common 
observation, having the ability to evaluate diagnosis and 
metastasis potential. 

Role of CLU in metastasis

Apart from relationship with chemoresistance, emerging 
evidence showed that CLU is overexpressed in several 
metastat ic  cancer  ce l l s ,  such as  prostate  cancer, 
hepatocellular carcinoma, nasopharyngeal carcinoma and 
colorectal cancer (61-63) Since CLU plays an important 
role in cancer metastasis, the mechanisms that CLU favors 
cancer metastasis have been explored (64). Upregulation 
of CLU promotes metastasis both in vitro and in vivo by 
EIF3I/Akt/MMP13 signaling (65). Inhibition of CLU gene 
using ASO not only could resentisize chemosensitivity of 
cancer cells, it could also help prevent the growing and 
metastasis of cancer cells simultaneously (66), also showing 
that CLU in either serum and/or tissue is expected to be 
a candidate of diagnosis biomarkers for detection of some 
early metastatic cancers.

CLU in lung cancer

Tobacco smoking and CLU

Tobacco smoking remains the predominant risk factor 
for the development of lung cancer. According to the 
Global Health Observatory (GHO) data, there were over 
1.1 billion people who smoked tobacco in 2015 (67). In 
China, World Health Organization (WHO) estimates 
about 27% of China’s population smoked (approximately 
303,926,600 persons) in year 2010 and around 24% of 
the population (approximately 291,267,700 persons) will 
be smokers by 2025. Although the population of smokers 
seems to be decreasing in 15 years, still, the mean number 
of cigarettes consume daily per smoker and the absolute 
number of total deaths due to smoking increased over time. 
In additional, trend of initiation to smoke started at a very 
young age, which is also becoming a concern issue (68-70). 
Recently, a study discovered a connection between CLU 
and tobacco smoking, although the concentration of CLU 
did not correlate with nicotine addiction or dependence 
scores, but the significantly increased of CLU was found 

 

 

 

 

 

Figure 1 Molecular function of clusterin in tumorgenesis. 
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in the saliva of prolonged tobacco and high intensity of 
tobacco consumption users, moreover the levels of CLU 
protein decreased significantly in 6 months after smoking  
cessation (71). Another study also found out that tobacco 
cessation could improve the overall survival of lung cancer 
patients (72). 

Benzo(a)pyrene (BaP) is a ubiquitous environment 
contaminant found in coal tar, automobile exhausts fumes, 
tobacco smoke and charcoal grilled food, it has been 
reported as one of the components in cigarette mainstream 
smoke (73). Overexpression of CLU, neuropilin-2 
(NRP2) and A-kinase anchor protein 12 (AKAP12) have 
been identified in BaP-transformed 16HBE cell line 
T-16HBE-C1 cells (74). Similar results also obtained 
from another research. Levels of CLU and NRP2 were 
significant evaluated in culture supernatant of T-16HBE-C1 
xenografted nude mice compared with control. Although 
CLU and NRP2 could predicate the progression of tumor 
respectively, however, CLU appeared to be more sensitive 
than NRP2 (75).

These results implying that BaP could be one of the 
factors inducing expression of salivary CLU during 
smoking, additionally tobacco cessation may be helpful in 
the prognosis of lung cancer. Despite that, the mechanisms 
between BaP and other composition in the tobacco and 
CLU still needed to be probed.

CLU as a tumor biomarker

NSCLC accounts for 85% of primary lung cancers, among 
three of the histological subtypes mentioned before, 
adenocarcinoma is the most common one (76). By using 
the combination of proteomic study and bioinformatic 
prediction on signal peptides, CLU also served as a solid 
serological biomarker in lung adenocarcinoma, together 
with Calsyntenin-1 (CLSTN1) and neutrophil gelatinase-
associated lipocalin (NGAL) (77). For early stages NSCLC 
patients, surgery is still remaining the cornerstone of 
treatment and recommended by surgeons (4,78). Expression 
of CLU was proven to be a useful biomarker and related 
to fewer relapses and longer survival in surgically resected 
lung adenocarcinoma. Panico et al. (20) also discovered the 
decreasing expression of CLU from well-differentiated to 
poorly differentiated adenocarcinomas. 

Distribution of CLU in NSCLC tissue

In order to determine the location and distribution of 

CLU in lung cancer, Jeffrey M and colleagues stained the 
specimens retrieved from lung cancer patients with anti-
clusterin α-chain antibody, an antibody used to detect both 
nuclear and cytoplasmic isoform. Together, they observed 
cytoplasmic CLU staining from all the 44 samples, and 
none of the nuclear staining was observed. Furthermore, 
cCLU staining was associated with longer survival in 
patients with surgically resected NSCLC which is similar to 
the study mentioned previously (79). Interestingly, another 
research concluded that both nuclear and cCLU staining 
was observed in lung cancer, CLU staining only observed 
in 70 patients (57.9%), nuclear staining only in 27 patients 
(22.3%) and both nuclear and cytoplasmic staining in 16 
patients (13.2%). In additional, lung adenocarcinomas 
were more likely to have cytoplasm staining only (80). The 
different results obtained from both studies may be due to 
lacking of larger sample size, sampling deviation and value 
deviation.

CLU and lung cancer chemotherapy

Platinum-based chemotherapy remains the standard 
treatments for advanced NSCLC patients. The platinum 
compounds currently used are cisplatin and carboplatin. 
However, limited efficacy of chemotherapy is still one of the 
major impediments in the treatment of NSCLC. Studies 
have found out that high levels of sCLU expressed in 
various cancer, including breast and ovary, is associated with 
chemoresistance (81-85). In lung cancer, researches carried 
out in animal models and lung cancer cell lines, revealing 
that expression of sCLU is upregulated after exposure to 
chemotherapy and radiotherapy (86). The overexpression of 
sCLU confers resistance to cisplatin (DDP) in A549 cells, 
and by silencing it could resensitize A549 cells to DDP 
through AKT and ERK1/2 pathway in vitro (87). Using 
luciferase tests, another research also shows that miR-195 
could bound to the 3’-UTR of CLU. With overexpression 
of miR-195, amassment of CLU could be reduced, further 
improved the sensitivity of cancer cells which is resistant to 
docetaxel (88). Chen’s study (89) also discovered that sCLU 
is related to the development of chemoresistance to DDP. 
By using Targetscan and luciferase assay, they found out 
miR-378 could directly targeted to sCLU, decrease sCLU 
expression in lung adenocarcinoma cells, thus enhancing 
cell apoptosis and resensitize to cDDP both in vitro and 
in vivo. Since numerous studies revealed that inhibition of 
CLU could increase the effectiveness of chemotherapeutic 
agents to kill tumor cells (48,90), the selective silencing of 
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CLU gene may be reasonable. 

Treatment of NSCLC with ASO against CLU

Advances in the field of nucleic acid chemistry hold potential 
for developing gene silencers, which may help mediating 
tumor progression and treatment resistance. ASO-based 
agents are synthetic fragments of DNA, specifically 
hybridize with complementary mRNA regions of a target 
gene organized by Ago2 to form RNA/DNA duplexes, 
therefore inhibit gene expression (91). The combination of 
an ASO with other compounds, such as therapeutic agents, 
has shown synergistic antineoplastic effects (92-94). In 
particular, custirsen (OGX-011), a second-generation ASO, 
inhibitor of CLU gene could be an attractive approach 
for treatment (95,96). In lung cancer models, CLU gene 
suppressed by custirsen also proven enhanced sensitivity 
to chemotherapies such as paclitaxel and gemcitabine both  
in vitro and in vivo. The enhanced chemosensitivity of A549 
cell line towards paclitaxel increased in a dose-dependent 
manner after ASO treatment, significantly reducing cell 
viability. CLU ASO also enhanced micellar paclitaxel and 
gemcitabine chemosensitivity in A549 xenograft in both 
nude and SCID mice, causing a 54% and 60% reduction 
in mean tumor volume by 5 weeks following initiation of 
treatment (48).

With support of preclinical trail results, custirsen was 
administered in combination with a gemcitabine and 
platinum regimen in phase I/II trail of advanced non-
small cell lung cancer, showing improvement in survival 
data. Notably, the estimated ratio of death hazard for 
patients having a CLU response to the death hazard rate 
for those not having a response was 0.5, representing a 
50% reduction in the hazard of death with CLU response 
(97). Similar results also obtained previously in advanced 
prostatic cancer resistant patients, in which phase III has 
been completed in 2015 (98,99). Clinical studies conducted 
related to CLU and OGX-011 are summarized in Table 1.

CLU and NSCLC radiotherapy 

Apart from chemotherapy, role of CLU on radiation 
sensitivity also has been investigating for years. Interestingly, 
similar results  were obtained, CLU is frequently 
overexpressed, a protein which could significantly decrease 
radiotherapy sensitivity in many human cancers (46,86,100). 

The generation of reactive oxygen species (ROS) 
is the postulated mechanism of action for radiation 

therapy. During water radiolysis, DNA lesions caused by 
ROS react with oxygen to form stable DNA peroxides, 
enhancing the efficacy of radiotherapy (101). Sensitivity 
of cancer cells towards radiotherapy decreased may due 
to the cytoprotective role function of CLU, which was 
stimulated when exposing to oxidative stress as stated 
before. High levels of CLU could act as a cell survival 
protein that mediates radioresistance through the inhibition 
of apoptosis (102). Sensitivity of cancer cells towards 
radiotherapy resensitized after the inhibition of CLU gene 
by using ASOs (103). Another research demonstrated that 
combination treatment of radiotherapy and OGX-011 
could greatly decrease survival of lung cancer cells, showing 
that CLU may be a therapeutic target in radiotherapy (104). 
Moreover, Watari et al. (105) demonstrated that CLU 
could also be used as a molecular marker to predict overall 
survival of advanced-stage cancer patients with curative 
intended radiotherapy.

CLU and NSCLC epithelial-mesenchymal transition

Epithelial-mesenchymal transition (EMT) is a process 
by which epithelial cells lose their cell polarity and cell-
cell adhesion, therefore gaining the ability to migrate and 
invade as single cells (106). The ectopic expression of 
forkhead box P3 (FOXP3), also known as scurfin, was found 
inducing EMT and activated Wnt/β-catenin signaling 
pathway, results in promoting tumor growth and metastasis 
of NSCLC (107). 

Numerous studies regarding the relationship between 
CLU and EMT have been carried out. Transcriptome 
profiling of a TGF-β-induced EMT demonstrated by 
Lenferink et al. (108) revealed that upregulated levels of 
sCLU plays an important role in promoting EMT. Shiota’s 
team (109) discovered that TGF-β-induced CLU expression 
was mediated by Twist 1 through binding to distal promoter 
of CLU, they demonstrated that treatment with EMT-
inducing cytokine TGF-β could unregulated the expression 
of Twist 1 followed by CLU expression. Another study 
discovered that CLU interact with eHSP90α, together they 
synergistically promote the EMT process. By going through 
proximity ligation assay and co-immunoprecipitation 
experiments, the authors showed that CLU take part in 
eHSP90α-LRP1 complex formation by increasing the 
binding affinity of eHSP90α and its receptor, low-density 
lipoprotein receptor-related protein 1 (LRP1) (110). These 
conclude that both TGF-β-induced CLU expression, 
interaction of CLU and eHSP90α-LRP1 complex could 

https://en.wikipedia.org/wiki/Epithelium
https://en.wikipedia.org/wiki/Cell_polarity
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promote EMT, but there is no relevant research between 
these two mechanisms to determine their association.

In lung cancer,  CLU was observed modulating 
transdifferentiation of lung squamous cell carcinoma to 
lung adenocarcinoma by promoting epithelial-mesenchymal 
transition (EMT) (111). The invasiveness of lung 
adenocarcinoma could also be attributed to CLU-mediates 
EMT through modulating ERK signalling and Slug 
expression (18). Moreover, siRNA-mediated knockdown 
of PTEN, a target of miR-19, also resulted in EMT, 
migration, and invasion of lung cancer cells, suggesting that 
PTEN is also involved (112). 

SRAMs refers to genes that significantly repressed 
in association with DNA methylation, Lin’s team (113) 
integrated the gene expression profiles involved in 
migration and metastasis of NSCLC, they found out that 
the EMT-SRAMs was related and also associated with 
erlotinib resistance in epithelial growth factor receptor 
(EGFR) NSCLC cell lines. Cell-based studies carried out, 
demonstrated that increasing expression of the E-cadherin 
in cancer cells, the epithelial cell marker, are more 
sensitive to EGFR inhibitor, erlotinib (114). Correlation 
between cancer cells sensitivity to erlotinib and E-cadherin 
expression was discovered, it has been shown that 
restoration of E-cadherin expression increases sensitivity to 
erlotinib (115). E-cadherin is a cell adhesion molecule that 
plays a key role in the signaling and regulation of EMT. 
Decreasing expression of E-cadherin is associated with 
increasing of EMT (116,117). When NSCLC cell lines 
expressing sCLU was treated with anti-CLU antibody, the 
expression of E-cadherin increased. In parallel, inhibition of 
EMT and decreasing of matrix metalloproteinase-2 (MMP-
2) gene, could inhibit the invasion of cancer (118-120).  
Moreover, high cell surface E-cadherin are more sensitive 
to radiation. Theys’s team (121) found out that EMT-like 
conversion of mesenchymal phenotype could promote 
radioresistance in human tumor cells. Thus E-cadherin 
expression varies in tumors induced by changes in 
microenvironment such as CLU or other stimuli may 
contribute to the sensitivity of tumor cells to radiotherapy 
and chemotherapy. Furthermore, BaP, one of the cigarette’s 
mainstream smoke components as mentioned before, 
also found taking part in the induction of EMT (122). 
By using quantitative real-time PCR, BaP was observed 
could elevated the expression levels of linc00673 in an 
aryl hydrocarbon receptor- (AHR) dependent manner, as 
a result of E-cadherin and MMP-2 expression inhibition. 
Therefore, promote lung cancer cells migration, invasion 

and EMT (123). However, there is no evidence proving that 
BaP and CLU work synergistically.

CLU, EMT and PD-L1 in NSCLC

Recently, immunotherapy regarding programmed cell death 
1/programmed death ligand 1 (PD-1/PD-L1) has emerged 
as a hot topic. PD-L1 positive rate was much higher in 
patients with mesenchymal phenotypes, especially EGFR-
mutated pulmonary adenocarcinomas (pADC) compared 
to epithelial phenotypes, indicating that mesenchymal 
phenotypes patients are more likely to benefits from PD-1/
PD-L1 blocking immunotherapy (124). The expression 
of PD-L1 was proven dependent of EMT, regulated by 
TGF-α and TGF-β synergistically through NF-κB and 
DNA methylation (125). Co-expression of PD-L1 with 
EMT transition of circulating tumor cells (CTCs) was 
associated with poor survival in patients which undergo 
curatively resected NSCLC (126). In addition, Raimondi 
et al. (127) hypothesized that PD-L1 expression and EMT 
markers might represent NSCLC cells a possible molecular 
background for immune escape. These studies together 
indicate that CLU and EMT together participated in the 
metastasis of lung cancer, it is also possible that PD-L1 was 
also involved. Mechanism of tumor-intrinsic regulation of 
PD-L1 has been discovered in lung cancer which linked 
EMT to cytotoxic T cells dysfunction and metastasis (128). 
However, the relationship between CLU and PD-L1 
remained unknown, therefore further investigation into the 
relationship between CLU and PD-L1 is needed. 

Conclusions

CLU is a protein widely exists in almost all physiological 
fluids. Various stresses such as tobacco smoking, oxidative 
stress, inflammation, stress response could increase the 
expression of CLU. Overexpression of CLU has been 
confirmed in many malignancies, including NSCLC. In this 
review, we have shown that CLU participate in many phases 
of NSCLC tumorigenesis, including cancer cell survival, 
apoptosis, tumor angiogenesis and metastasis. 

The ubiquitin-like function of CLU proven could 
improve prostate cancer cell survival, yet, the influence on 
lung cancer cells ought to be probed. 

In NSCLC, high level of CLU subsequently triggers 
downstream pathway result ing in insensit ivity to 
chemotherapy or radiotherapy. Thus, CLU has also 
been proposed as a potential prognostic biomarker and 
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therapeutic target. Several RCTs have proved the efficiency 
of anti-CLU treatment in NSCLC. By treating with the 
second-generation ASO Custirsen, chemosensitivity and 
radiosensitivity of lung cancer patients could be enhanced. 

All these together, shows that CLU is an important 
protein which is related with tumorigenesis and treatment 
of NSCLC. In the subsequent studies, its biological 
function such as ubiquitin-like function, as well as the 
association between CLU and immunotherapy and targeted 
therapy is worth exploring.
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