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Background: Significantly rising plasma circulating C-reaction protein (CRP) concentrations are pervasive 
in lung cancer (LC) development, demonstrating a bidirectional relation. However, it remains uncertain 
whether the causation between them exists, and the degree to which the effect varies across different ethnic 
ancestries remains unknown. Therefore, we attempted to investigate the causal relationship between these 
two phenotypes. 
Methods: With summary statistics of CRP-related single nucleotide polymorphisms (SNPs) identified by 
several large-scale genome-wide association studies (GWAS) datasets based on five ethnic ancestries coverage 
worldwide, we implemented bidirectional two-sample Mendelian randomization (MR) analyses. Genetic 
summary data of 11,348 LC cases and 15,861 controls from the International Lung Cancer Consortium 
(ILCCO) were applied. The inverse-variance weighted (IVW) approach was utilized as the principal analysis, 
supplemented by various complementary methods. 
Results: MR study did not reveal the causal relationship shared across genetically predisposed CRP blood 
concentrations and LC risk (OR =1.022, 95% CI: 0.965–1.083, P=0.455) including pathological subtypes (OR 
=1.026, 95% CI: 0.947–1.112, P=0.534 for lung adenocarcinoma; OR =1.060, 95% CI: 0.970–1.158, P=0.201 
for squamous cell lung cancer). Further analyses among East Asian, Hispanic/Latin American, European, 
African American/Afro-Caribbean, and South Asian populations revealed consistent null causation. 
Additionally, the causal effects of LC on CRP concentrations were not statically significant (OR =0.999, 95% 
CI: 0.977–1.021, P=0.923).
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Introduction

Cancer is a leading global public health issue and the second 
major cause of death in the United States. Particularly, lung 
cancer (LC) is currently the second most common cancer 
and the major cause of cancer-related death globally (1). 
The American Cancer Society estimates that 235,760 new 
LC cases and 131,880 LC deaths are projected to occur 
in the United States in 2021 (2). Thus, early recognition 
of potentially modifiable risk factors contributes to better 
prevention of LC.

Growing studies have demonstrated that chronic 
inflammation, especially within the respiratory system, 
might be a risk factor for LC (3-6). Several inflammatory 
conditions, such as chronic pulmonary infection (7) and 
chronic obstructive pulmonary disease (8), were correlated 
with an increased risk of LC. It has been proposed 
that LC could be induced by pulmonary inflammation 
through several pathways, such as the increase in 
angiogenesis during the repair of the damaged tissue and 
the generation of reactive oxygen (9). Simultaneously, 
circulating C-reactive protein (CRP) was considered 
as a systemic marker of chronic inflammation (10), and 
elevated CRP blood concentrations have been widely 
evaluated for their association with LC (3,11-20). Up 
till now, two assumptions have been presented to explain 
the mechanisms between elevated CRP concentrations 
and the risk of LC (10). On the one hand, elevated CRP 
concentrations and chronic inflammation are causally 
related to the carcinogenesis of the lung indeed. On the 
other hand, CRP concentrations may also indicate a 
systemic response to ongoing disease or comorbidity, such 
as an occult cancer or a premalignant state. The majority 
of previous cohort studies and a meta-analysis (21) denoted 
that elevated CRP concentrations were correlated with 
LC occurrence. However, given that cigarette smoking is 
by far the leading risk factor for LC, CRP is widely seen 

as a predictor of LC in smokers and former smokers (22),  
while cigarette smoking itself has been reported to 
increase circulating levels of CRP directly (23). Hence, 
conventional observational studies are prone to bias by 
potential confounding factors or reverse causation, and 
the causality was underpowered for definitive conclusions 
from previous studies.

Using genetic variations as instrumental variables 
(IVs), Mendelian randomization (MR) analysis is a novel 
epidemiology method to estimate the causation between 
an exposure and an outcome, with less impressionability to 
reverse causation and unmeasured confounders. In settings 
for which the IV assumptions are well justified, the findings 
could help optimize drug development or clinical trials 
and inform clinical or public health decision-making (24). 
Single nucleotide polymorphism (SNP) is a single base-
pair difference in the DNA sequence of individuals within a 
species, which is the most common type of genetic variation 
in humans (25). Given that genetic variants are allocated 
at conception randomly, they are generally independent 
of environmental risk factors and precede the risk factors 
and the diseases’ onset (26). As for CRP, it has been 
estimated that the heritability of CRP blood concentrations 
was estimated from 25% to 40% (27), suggesting that 
genetic architecture might contribute to modulating CRP 
concentrations. Meanwhile, based on the summary data 
from genome-wide association studies (GWAS), our two-
sample MR analysis could assess their causal relationships 
more comprehensively with robust statistical power (28,29). 
Previous MR studies (5,30-32) have illustrated that no 
causation was detected between genetically regulated 
elevated CRP concentrations and risk of LC. However, 
the sample size of LC patients in previous MR studies was 
relatively limited, insufficient to provide adequate statistical 
power to evaluate their causal nexus. Then, due to the 
limitation of the GWASs at the time, causal inferences 
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provided by previous studies solely applied to populations 
of European ancestry; therefore, the findings were lack of 
generalizable value. Moreover, since genetically higher LC 
risk can influence CRP concentrations, no bidirectional MR 
study has been conducted, and therefore, previous findings 
were likely to be biased by reverse causality.

Generally, using the recent largescale meta-analysis of 
the GWASs updating CRP-specific SNPs among diverse 
populations, the present study could offer the latest 
comprehensive evidence for assessing the bidirectional 
causal  ef fect  between genetical ly  regulated CRP 
concentrations and risk of LC with the two-sample MR 
method.

Methods

Study participants of lung cancer

In general, 11,348 LC cases and 15,861 controls from the 
International Lung Cancer Consortium (ILCCO) (33),  
an international research group that established and 
implemented LC research from different geographical areas 
and ethnicities, were used as epidemiological summary-
level data. Subgroup analyses were stratified according to 
the pathology classification of non-small cell lung cancer 
(NSCLC). Specifically, we divided types of cancer into lung 
adenocarcinoma (LUAD) (3442 cases, 14,894 controls) 
as well as squamous cell lung cancer (LUSC) (3275 cases, 
15,038 controls). The study was conducted following the 
Declaration of Helsinki (as revised in 2013) (34). 

Genetic variants associated with elevated CRP 
concentrations

The latest large-scale GWAS datasets were retrieved from 
MR-Base, an open GWAS project developed at the MRC 
Integrative Epidemiology Unit (IEU) at the University of 
Bristol (35). Through Bonferroni correction to control the 
family-wise error rate (FWER), the P=5×10−8 threshold 
was widely accepted for association identification between 
a common genetic variant and a trait of interest, given the 
linkage disequilibrium (LD) structure of the genome (36).  
Using the MR-Base platform, SNPs associated with 
elevated CRP concentrations were initially selected from 
Neale Lab, Pan-UK Biobank (UKB) team, RIKEN 
Center for Integrative Medical Sciences, and the European 
Bioinformatics Institute (EBI) database of complete 
GWAS summary data at the genome-wide significance 

threshold (P<5×10-8). Utilizing LD analysis, we attempted 
to exclude SNPs once mutual LD surpassed the limited 
value (R2<0.001) with a larger P value conjugately. 
Eventually, the final IV set was established, including 204 
SNPs (available online: https://cdn.amegroups.cn/static/
public/tlcr-21-750-01.xlsx). Among them, 174 SNPs were 
of European ancestry, 13 SNPs were of Hispanic or Latin 
American origin, 7 SNPs were of South Asian ancestry, 
6 SNPs were of East Asian ancestry, and 4 SNPs were of 
African American or Afro-Caribbean ancestry. Risk alleles 
and baseline alleles were encoded separately in accordance 
with the association with the rate of CRP concentrations. 
As the sample size of 204 instruments and 310,305 
individual samples in our study, the F-statistic was 3,135.39 
as estimated (37) given the type I error rate =0.05, which 
suggested noticeable correlativity for the MR analysis.

Statistical analysis

MR method was implied as the statistical analysis tool, 
which possesses three suppositions as foundations (38): 
(I) the IVs are robustly correlating with elevated CRP 
concentrations; (II) the IVs affect LC merely via their 
effect on elevated CRP concentrations (i.e., the IVs are 
independent of the outcome given the exposure), and 
(III) the IVs are independent of any confounders. As 
demonstrated by the previous studies (35) and the screening 
procedure of SNPs described in the previous paragraph, the 
first assumption was met. 

Two-sample MR analyses were conducted to evaluate 
the potential bidirectional associations between elevated 
CRP concentrations and LC risk (Figure 1). In addition to 
the aggregate effect, causal inferences were obtained from 
five independent ancestries for specific evaluation among 
different ethnic groups. Five well-established MR analytical 
methods were applied, including inverse-variance weighted 
(IVW), weighted median, MR-Egger, weighted mode, 
and simple mode. IVW was applied to the combination 
of multiple IVs as sole estimation of genetic variants 
by weighted score, which has the most statistical power 
among the five methods (39). The rest of the methods 
were performed for sensitivity analysis and to indirectly 
test the second assumption. Global pleiotropic effects 
were obtained from the MR-Egger analyses based on the 
intercept. Cochran's Q statistic and I2 were inspected to 
estimate heterogeneity. Furthermore, we conducted leave-
one-out analyses to investigate whether the estimation 
of MR was determined or biased by an individual SNP 
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by omitting a single SNP successively. MR analyses 
were performed in R (version 3.6.2) using the package 
TwoSampleMR (version 0.5.0) (35).

Results

The basic characteristics and their F statistics for selected 
summary level GWASs applied in our MR study are given 
in Table 1, and the detailed information of each SNP used 
in our study is listed in table available online: https://cdn.
amegroups.cn/static/public/tlcr-21-750-01.xlsx. 

In the MR analysis of mixed ancestries using 204 
SNPs, the outcome of IVW method demonstrated that 
although genetically regulated one-unit increased in the 
log-transformed CRP concentrations were associated 
with a relatively 2.2% increased risk of LC, no statistically 
meaningful conclusions could be drawn (OR =1.022, 
95% CI: 0.965–1.083, P=0.455) (Figure 2), which was also 
consistent regarding pathological subtypes including LUAD 
(OR =1.026, 95% CI: 0.947–1.112, P=0.534) and LUSC 
(OR =1.060, 95% CI: 0.970–1.158, P=0.201). Findings 
were consistent among sensitivity analyses, demonstrating 
null causal relationship between both phenotypes (available 

online: https://cdn.amegroups.cn/static/public/tlcr-21-750-
02.xlsx). Meanwhile, as for the causal effect among different 
ethnic populations, no association reached statistical 
significance among East Asian (OR =1.075, 95% CI: 0.754–
1.532, P=0.690), Hispanic/Latin American (OR =0.998, 
95% CI: 0.884–1.127, P=0.980), European (OR =1.044, 
95% CI: 0.945–1.155, P=0.397), African American/Afro-
Caribbean (OR =1.055, 95% CI: 0.884–1.260, P=0.551), 
and South Asian population (OR =0.999, 95% CI: 0.911–
1.096, P=0.984). Detailed results on LC subtypes of ethnic-
specific analyses are presented in Figure 3.

Regarding the impact of LC upon CRP concentrations, 
similar modest and nonsignificant estimates of causal effect 
were observed (OR =0.999, 95% CI: 0.977–1.021, P=0.923), 
conforming the absence of bidirectional effects. Subtypes 
including LUSC (OR =0.996, 95% CI: 0.970–1.023, P=0.790) 
and LUAD (OR =1.011, 95% CI: 0.991–1.031, P=0.300) 
supported the same conclusion. Lack of causal association also 
predominated among population subgroups (Figure 3).

The results of sensitivity analyses among all study 
populations are shown in table available online: https://
cdn.amegroups.cn/static/public/tlcr-21-750-02.xlsx. Using 
MR-Egger regression, our findings did not support the 
existence of global pleiotropic assumptions in most of the 
study outcomes (Table S1), while evidence of heterogeneity 
was found in LC effect on European-specific CRP variants 
(Table S2). Leave-one-out studies of the LC overall and 
subgroup analyses showed no evidence that a single SNP 
had an impact upon the overall effect of CRP variants on 
LC risks (available online: https://cdn.amegroups.cn/static/
public/tlcr-21-750-03.xlsx). 

Discussion

This is the first study to conduct bidirectional MR analyses 
between CRP concentrations and LC among different 
ethnic backgrounds. No bidirectional causation between 
genetically regulated elevated concentrations of CRP 
and LC risk was observed in our study among East Asian 
(P=0.690, nSNP =6, n=75,391), Hispanic/Latin American 
(P=0.980, nSNP =13, n=15,912), European (P=0.397, 
nSNP =174, n=204,402),  African American/Afro-
Caribbean (P=0.551, nSNP =4, n=6,203), and South Asian 
populations (P=0.984, nSNP =7, n=8,397). Additionally, 
no causality was found in subgroup analyses concerning 
pathologic types as well. 

The results are inconsistent with most previous 
prospective cohort studies (3,11,12,14,16-19) using 

Instrumental variables for CRP levels (n=204)
·	 East Asian-specific CRP variants (n=6)
·	 Hispanic/Latin American-specific CRP 

variants (n=13)
·	 European-specific CRP variants (n=174)
·	 African American/Afro-Caribbean-specific 

CRP variants (n=4)
·	 South Asian-specific CRP variants (n=7)

Instrumental variables for lung cancer (n=20)

·	 Lung adenocarcinoma (n=10)

·	 Squamous cell lung cancer (n=15)

CRP levels Lung cancer

Figure 1 The overview of our study design aiming at revealing 
the bidirectional relations between C-reactive protein (CRP) and 
lung cancer. Two hundred and four CRP-specific single nucleotide 
polymorphisms (SNPs) (originated from East Asian, Hispanic/
Latin American, European, African American/Afro-Caribbean, 
and South Asian ancestries), and 20 lung cancer-specific SNPs 
(including lung adenocarcinoma and squamous cell lung cancer) 
were applied as instrument variables respectively to evaluate the 
bidirectional causal relation.

https://cdn.amegroups.cn/static/public/tlcr-21-750-01.xlsx
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measured plasma concentrations of circulating CRP to 
explore the risk of LC. Shiels et al. (16) demonstrated 
that elevated measured CRP concentrations were related 
to the risk of LC in two independent studies from the 
Prostate, Lung, Colorectal, and Ovarian Cancer Screening 
Trial. Allin et al. (11) also illustrated that elevated plasma 
concentrations of CRP in cancer-free individuals were 

relevant to an increased risk of LC. Besides, the latest meta-
analysis (21) denoted that elevated plasma concentrations 
of CRP were also related to an increased risk of LC. 
Interestingly, after a stratified analysis (15) based on 
smoking status, the positive association between circulating 
high sensitivity CRP concentrations and the risk of LC 
disappeared when considering non-smokers. Thus, rather 

Table 1 The basic characteristics and their individual F statistics for selected summary level GWASs applied in our MR study.

Trait Sample size Sex First author/consortium F statistics

Overall C-reactive protein (CRP) 310,305 Males and females – 3,135.39

East Asian-specific CRP variants 75,391 Males and females Ishigaki K 762.53

Hispanic/Latin American-specific CRP variants 15,912 Males and females Wojcik GL 161.73

European-specific CRP variants 204,402 Males and females Neale lab 2,065.67

African American/Afro-Caribbean-specific CRP variants 6,203 Males and females Pan-UKB team 63.66

South Asian-specific CRP variants 8,397 Males and females Pan-UKB team 85.82

Lung cancer 27,209 Males and females ILCCO 275.84

Lung adenocarcinoma 18,336 Males and females ILCCO 186.21

Squamous cell lung cancer 18,313 Males and females ILCCO 185.98

ILCCO, the International Lung Cancer Consortium.

Figure 2 Inverse-variance weighted results of MR study investigating the causal association between genetically regulated CRP levels on 
lung cancer among different ethnic populations. MR, Mendelian randomization; CRP, C-reactive protein.
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than a causal factor, the authors (15) concluded that 
circulating high sensitivity CRP concentration could be a 
pre-diagnostic marker of LC. Since traditional observational 
studies are vulnerable to potential confounding factors or 
reverse causation, we supposed that previous results might 
be influenced by underlying confounders (e.g., cigarette 
smoking status and older age stratifications).

Our study showed similar results in effect directions 
compared with previous MR studies (5,30-32), whereas 
these studies came to the conclusions from a limited 
LC sample size. Among them, the largest sample size of 
LC patients was only 416 (30). Therefore, they might 
not be precise enough to evaluate causation between 
genetically elevated CRP concentrations and LC risk due 
to the deficiency of statistical power. In comparison, we 
specifically selected a total of 27,209 participants from 
ILCCO with 11,348 LC cases and 15,861 controls as 
our study participants, which were much more extensive 
than previous ones and offered adequate statistical 
power. Meanwhile, two (5,30) of them didn’t identify 
SNPs through GWAS, and the majority of chosen SNPs 
haven’t been confirmed by subsequent GWAS (27,40,41), 
indicating those SNPs might not be authentically associated 
with elevated CRP concentrations. Even for the other two 

studies (31,32) with GWAS-identified SNPs, some of their 
chosen SNPs were also proposed to have nothing to do 
with elevated CRP concentrations subsequently (27,40,41), 
such as rs4903031, rs6901250, and rs4705952. Additionally, 
genetic pleiotropy could occur without sensitivity analyses, 
indicating previously chosen SNPs might relate to other 
inflammatory processes and result in a spurious association. 
Consequently, biased estimation for the causation could 
happen due to those irrelevant SNPs and potential global 
pleiotropic effects in previous MR studies. Furthermore, 
more relevant SNPs have been updated in recent years. 
Our study included 204 SNPs from the latest GWAS as 
the IV set, which would explain the variance of elevated 
CRP concentrations more comprehensively and precisely. 
Generally, our updated MR study provided the latest and 
much more substantial evidence for evaluating the causality 
between genetically regulated elevated CRP concentrations 
and LC risk.

Regarding the etiology of LC, increasing evidence have 
illustrated that chronic inflammation may play a significant role 
amid the carcinogenesis process (4-7,16,42,43). Inflammatory 
conditions, such as chronic obstructive pulmonary disease 
(3,44-47), chlamydia pneumonia (4,48), tuberculosis (6), and 
human immunodeficiency virus (HIV) (49) seem to correlate 

Figure 3 Inverse-variance weighted results of bidirectional MR study investigating the causal association between lung cancer and CRP 
levels among different ethnic populations. MR, Mendelian randomization; CRP, C-reactive protein.
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with an increased LC risk. Through the nuclear factor kappa B 
(NF-κB) pathway, chronic inflammation may actively promote 
the malignant process, the increase in angiogenesis and 
proliferation of cells during tissue repair, and the up-regulation 
of antiapoptotic genes through reactive oxygen and nitrogen 
species production (9). Considered a systemic marker of 
chronic inflammation (5), elevated plasma CRP concentrations 
were associated with an increased LC risk in many 
conventional observational studies. However, our MR analysis 
denoted that elevated CRP concentrations were not causally 
associated with LC risk, which could be explained from 
two aspects. For one thing, chronic inflammation promotes 
the carcinogenesis of the lung, possibly by means of other 
inflammatory mediators except for CRP. It has been reported 
that soluble tumor necrosis factor receptor-2 (sTNFRII), 
serum amyloid A (SAA), and monokine induced by gamma 
interferon (CXCL9/MIG) were also related to LC risk (16).  
For another, due to the natural defects of observational 
studies, their results could be influenced by unmeasured 
confounders, such as smoking status and elder age. In addition, 
inflammation and elevated CRP concentrations could be 
induced by tumor growth, and CRP could also be an indicator 
of an immune response to tumor antigens (10). Consequently, 
elevated CRP concentrations might also respond to occult or 
very early-stage cancer (16). However, CRP may not always 
act as a cancer promoter but sometimes play a role in treating 
cancer. Sasaki et al. observed that CRP can inhibit lymph 
node metastasis and lymphatic angiogenesis of squamous cell 
carcinoma through injecting CRP into mice model (50). As 
for the prognostic effects of CRP, Shinohara and colleagues 
found high serum circulating CRP levels on postoperative days 
were associated with enhanced 5-year overall survival (OS) as 
well as recurrence-free survival (RFS) in NSCLC patients (51).  
Instead, Okada et al. reported the high serum CRP levels 
during perioperative period were a poor prognostic factor 
for OS and RFS in NSCLC patients (52). Consequently, the 
impact of CRP levels on the incidence and prognosis of LC 
was nuanced and complex, and further studies with larger 
sample sizes and better designs are in an urgent need.

Several merits deserve explicit mention. First, this is 
the first study to assess the bidirectional causation between 
elevated CRP concentrations and LC risk to date. Second, 
we used the most comprehensive GWAS-identified SNPs 
as an IV set. Compared with the previous studies, our 
study with 204 SNPs explained more variance of elevated 
CRP concentrations. Thanks to the robustly associated 
IVs (F-statistics =3,135.39) and the great sample size 
(n=310,305), our study was capable of providing a relatively 

accurate evaluation of a causal inference. Third, to the best 
of our knowledge, this is the first MR study that conducted 
stratification analyses according to different ethnic 
populations. Thus, we were able to investigate whether 
their association could vary under different ancestry 
backgrounds.

Notwithstanding the advantages, several limitations in 
our study cannot be neglected. First, even though the most 
comprehensive set of multiethnic genetic variants were 
applied for our research so far, only a part of the variance 
of elevated CRP concentrations could be explained in the 
population. Some unknown CRP-related SNPs, which 
deserve further investigation in future GWASs, could 
play an essential role in LC development. Besides, due to 
the methodology limitations currently, MR assumptions 
could not be thoroughly tested, and therefore potential 
violations against the assumptions may occur. To overcome 
this difficulty, instead of directivity evaluated in the 
second assumption, we implemented additional sensitivity 
analyses, which showed the absence of pleiotropic effects 
in our study, suggesting no violation of the second MR 
assumption. Moreover, depending on GWAS summary 
statistics, the two-sample MR methods assume a linear 
relationship between the exposure and the outcome. Hence, 
it is possible that a few genetic variants were also related to 
confounding factors of CRP and LC. 

Overall, our study negates bidirectional causal effects of 
CRP concentrations on LC among East Asian, Hispanic/
Latin American, European, African American/Afro-
Caribbean, and South Asian populations. Still, it opens a 
new concept for the current research orientation. Further 
investigation of the profound relationship between both 
phenotypes is required to be unveiled in pathologic and 
biochemistry aspects. 
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Supplementary

Table S1 MR-Egger regression analyses on detecting directional pleiotropy of Mendelian randomization.

Outcome Exposure Egger intercept SE P value

Lung adenocarcinoma C-reactive protein 0.0013 0.0031 0.6907

Lung cancer C-reactive protein 0.0005 0.0023 0.8411

Squamous cell lung cancer C-reactive protein −0.0018 0.0035 0.6039

Lung adenocarcinoma East Asian-specific CRP variants 0.0010 0.0509 0.9850

Lung cancer East Asian-specific CRP variants −0.0384 0.0247 0.1945

Squamous cell lung cancer East Asian-specific CRP variants −0.0054 0.0352 0.8860

Lung adenocarcinoma Hispanic/Latin American-specific CRP variants 0.0107 0.0179 0.5618

Lung cancer Hispanic/Latin American-specific CRP variants −0.0013 0.0144 0.9278

Squamous cell lung cancer Hispanic/Latin American-specific CRP variants −0.0037 0.0237 0.8774

Lung adenocarcinoma European-specific CRP variants 0.0017 0.0037 0.6500

Lung cancer European-specific CRP variants 0.0010 0.0027 0.7013

Squamous cell lung cancer European-specific CRP variants −0.0020 0.0042 0.6317

Lung adenocarcinoma African American/Afro-Caribbean-specific CRP variants −0.1058 0.0686 0.2632

Lung cancer African American/Afro-Caribbean-specific CRP variants −0.0878 0.0448 0.1891

Squamous cell lung cancer African American/Afro-Caribbean-specific CRP variants 0.0553 0.0650 0.4844

Lung adenocarcinoma South Asian-specific CRP variants −0.0107 0.0238 0.6722

Lung cancer South Asian-specific CRP variants −0.0236 0.0152 0.1829

Squamous cell lung cancer South Asian-specific CRP variants −0.0068 0.0234 0.7842

C-reactive protein levels Lung adenocarcinoma −0.0347 0.0120 0.0199

C-reactive protein levels Lung cancer −0.0274 0.0086 0.0052

C-reactive protein levels Squamous cell lung cancer −0.0113 0.0099 0.2749

East Asian-specific CRP variants Lung adenocarcinoma – – –

Hispanic/Latin American-specific CRP variants Lung adenocarcinoma – – –

European-specific CRP variants Lung adenocarcinoma – – –

African American/Afro-Caribbean-specific CRP variants Lung adenocarcinoma – – –

South Asian-specific CRP variants Lung adenocarcinoma – – –

East Asian-specific CRP variants Lung cancer −0.0605 0.0221 0.2233

Hispanic/Latin American-specific CRP variants Lung cancer −0.0380 0.0273 0.2589

European-specific CRP variants Lung cancer −0.0256 0.0181 0.2511

African American/Afro-Caribbean-specific CRP variants Lung cancer −0.1581 0.0993 0.2523

South Asian-specific CRP variants Lung cancer 0.0425 0.0578 0.5963

East Asian-specific CRP variants Squamous cell lung cancer – – –

Hispanic/Latin American-specific CRP variants Squamous cell lung cancer −0.0389 0.0335 0.3654

European-specific CRP variants Squamous cell lung cancer −0.0094 0.0231 0.7238

African American/Afro-Caribbean-specific CRP variants Squamous cell lung cancer −0.0501 0.0590 0.5520

South Asian-specific CRP variants Squamous cell lung cancer – – –
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Table S2 Heterogeneity test of bidirectional Mendelian randomization

Outcome Exposure Method Q Q df* Q P value I2

Lung adenocarcinoma Overall CRP variants MR Egger 226.679 202 1.12E-01 10.89%

Lung adenocarcinoma Overall CRP variants Inverse variance weighted 226.857 203 1.20E-01 10.52%

Lung cancer Overall CRP variants MR Egger 282.244 202 1.64E-04 28.43%

Lung cancer Overall CRP variants Inverse variance weighted 282.300 203 1.94E-04 28.09%

Squamous cell lung cancer Overall CRP variants MR Egger 285.919 202 9.26E-05 29.35%

Squamous cell lung cancer Overall CRP variants Inverse variance weighted 286.301 203 1.05E-04 29.10%

Lung adenocarcinoma East Asian-specific CRP variants MR Egger 8.466 4 7.59E-02 52.75%

Lung adenocarcinoma East Asian-specific CRP variants Inverse variance weighted 8.467 5 1.32E-01 40.95%

Lung cancer East Asian-specific CRP variants MR Egger 4.539 4 3.38E-01 11.88%

Lung cancer East Asian-specific CRP variants Inverse variance weighted 7.289 5 2.00E-01 31.41%

Squamous cell lung cancer East Asian-specific CRP variants MR Egger 1.364 4 8.50E-01 0.00%

Squamous cell lung cancer East Asian-specific CRP variants Inverse variance weighted 1.388 5 9.26E-01 0.00%

Lung adenocarcinoma Hispanic/Latin American-specific CRP variants MR Egger 7.854 11 7.26E-01 0.00%

Lung adenocarcinoma Hispanic/Latin American-specific CRP variants Inverse variance weighted 8.212 12 7.68E-01 0.00%

Lung cancer Hispanic/Latin American-specific CRP variants MR Egger 17.355 11 9.78E-02 36.62%

Lung cancer Hispanic/Latin American-specific CRP variants Inverse variance weighted 17.369 12 1.36E-01 30.91%

Squamous cell lung cancer Hispanic/Latin American-specific CRP variants MR Egger 20.534 11 3.85E-02 46.43%

Squamous cell lung cancer Hispanic/Latin American-specific CRP variants Inverse variance weighted 20.580 12 5.69E-02 41.69%

Lung adenocarcinoma European-specific CRP variants MR Egger 202.690 172 5.47E-02 15.14%

Lung adenocarcinoma European-specific CRP variants Inverse variance weighted 202.934 173 5.94E-02 14.75%

Lung cancer European-specific CRP variants MR Egger 247.330 172 1.47E-04 30.46%

Lung cancer European-specific CRP variants Inverse variance weighted 247.542 173 1.73E-04 30.11%

Squamous cell lung cancer European-specific CRP variants MR Egger 259.036 172 1.98E-05 33.60%

Squamous cell lung cancer European-specific CRP variants Inverse variance weighted 259.383 173 2.31E-05 33.30%

Lung adenocarcinoma African American/Afro-Caribbean-specific CRP variants MR Egger 0.440 2 8.03E-01 0.00%

Lung adenocarcinoma African American/Afro-Caribbean-specific CRP variants Inverse variance weighted 2.816 3 4.21E-01 0.00%

Lung cancer African American/Afro-Caribbean-specific CRP variants MR Egger 0.396 2 8.20E-01 0.00%

Lung cancer African American/Afro-Caribbean-specific CRP variants Inverse variance weighted 4.237 3 2.37E-01 29.19%

Squamous cell lung cancer African American/Afro-Caribbean-specific CRP variants MR Egger 0.765 2 6.82E-01 0.00%

Squamous cell lung cancer African American/Afro-Caribbean-specific CRP variants Inverse variance weighted 1.489 3 6.85E-01 0.00%

Lung adenocarcinoma South Asian-specific CRP variants MR Egger 2.362 5 7.97E-01 0.00%

Lung adenocarcinoma South Asian-specific CRP variants Inverse variance weighted 2.564 6 8.61E-01 0.00%

Lung cancer South Asian-specific CRP variants MR Egger 2.493 5 7.78E-01 0.00%

Lung cancer South Asian-specific CRP variants Inverse variance weighted 4.881 6 5.59E-01 0.00%

Squamous cell lung cancer South Asian-specific CRP variants MR Egger 2.961 5 7.06E-01 0.00%

Squamous cell lung cancer South Asian-specific CRP variants Inverse variance weighted 3.044 6 8.03E-01 0.00%

Overall CRP variants levels Lung adenocarcinoma MR Egger 14.144 8 7.81E-02 43.44%

Overall CRP variants levels Lung adenocarcinoma Inverse variance weighted 29.003 9 6.47E-04 68.97%

Overall CRP variants levels Lung cancer MR Egger 59.026 18 2.94E-06 69.51%

Overall CRP variants levels Lung cancer Inverse variance weighted 92.240 19 1.33E-11 79.40%

Overall CRP variants levels Squamous cell lung cancer MR Egger 82.661 13 3.48E-12 84.27%

Overall CRP variants levels Squamous cell lung cancer Inverse variance weighted 90.924 14 2.54E-13 84.60%

East Asian-specific CRP variants Lung adenocarcinoma Inverse variance weighted 4.124 1 4.23E-02 75.75%

Hispanic/Latin American-specific CRP variants Lung adenocarcinoma Inverse variance weighted 2.133 1 1.44E-01 53.12%

European-specific CRP variants Lung adenocarcinoma Inverse variance weighted 11.145 1 8.43E-04 91.03%

African American/Afro-Caribbean-specific CRP variants Lung adenocarcinoma Inverse variance weighted 0.086 1 7.69E-01 0.00%

South Asian-specific CRP variants Lung adenocarcinoma Inverse variance weighted 1.955 1 1.62E-01 48.84%

East Asian-specific CRP variants Lung cancer MR Egger 0.679 1 4.10E-01 0.00%

East Asian-specific CRP variants Lung cancer Inverse variance weighted 8.149 2 1.70E-02 75.46%

Hispanic/Latin American-specific CRP variants Lung cancer MR Egger 3.413 3 3.32E-01 12.11%

Hispanic/Latin American-specific CRP variants Lung cancer Inverse variance weighted 5.609 4 2.30E-01 28.69%

European-specific CRP variants Lung cancer MR Egger 39.422 3 1.41E-08 92.39%

European-specific CRP variants Lung cancer Inverse variance weighted 65.854 4 1.70E-13 93.93%

African American/Afro-Caribbean-specific CRP variants Lung cancer MR Egger 2.419 2 2.98E-01 17.31%

African American/Afro-Caribbean-specific CRP variants Lung cancer Inverse variance weighted 5.484 3 1.40E-01 45.30%

South Asian-specific CRP variants Lung cancer MR Egger 0.272 1 6.02E-01 0.00%

South Asian-specific CRP variants Lung cancer Inverse variance weighted 0.813 2 6.66E-01 0.00%

East Asian-specific CRP variants Squamous cell lung cancer Inverse variance weighted 2.708 1 9.99E-02 63.07%

Hispanic/Latin American-specific CRP variants Squamous cell lung cancer MR Egger 6.508 2 3.86E-02 69.27%

Hispanic/Latin American-specific CRP variants Squamous cell lung cancer Inverse variance weighted 10.896 3 1.23E-02 72.47%

European-specific CRP variants Squamous cell lung cancer MR Egger 61.891 2 3.64E-14 96.77%

European-specific CRP variants Squamous cell lung cancer Inverse variance weighted 67.002 3 1.87E-14 95.52%

African American/Afro-Caribbean-specific CRP variants Squamous cell lung cancer MR Egger 0.709 1 4.00E-01 0.00%

African American/Afro-Caribbean-specific CRP variants Squamous cell lung cancer Inverse variance weighted 1.430 2 4.89E-01 0.00%

South Asian-specific CRP variants Squamous cell lung cancer Inverse variance weighted 5.638 1 1.76E-02 82.26%

df*, degree of freedom.
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