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Background: Differentiating between benign and malignant pulmonary nodules is a diagnostic challenge, 
and inaccurate detection can result in unnecessary invasive procedures. Cell-free DNA (cfDNA) has been 
successfully utilized to detect various solid tumors. In this study, we developed a genome-wide approach to 
explore the characteristics of cfDNA sequencing reads obtained by low-depth whole-genome sequencing 
(LD-WGS) to diagnose pulmonary nodules.
Methods: LD-WGS was performed on cfDNA extracted from 420 plasma samples from individuals with 
pulmonary nodules that were no more than 30 mm in diameter, as determined by computed tomography 
(CT). The sequencing read distribution patterns of cfDNA were analyzed and used to establish a model for 
distinguishing benign from malignant pulmonary nodules.
Results: We proposed the concept of weighted reads distribution difference (WRDD) based on the copy 
number alterations (CNAs) of cfDNA to construct a benign and malignant diagnostic (BEMAD) algorithm 
model. In a training cohort of 360 plasma samples, the model achieved an average area under the receiver 
operating characteristic (ROC) curve (AUC) value of 0.84 in 10-fold cross-validation. The model was 
validated in an independent cohort of 60 plasma samples, obtaining an AUC value of 0.87. The BEMAD 
model could distinguish benign from malignant nodules at a sensitivity of 74% and a specificity of 86%. 
Furthermore, analysis of the critical features of the cfDNA using the BEMAD model identified repeat 
regions that were associated with microsatellite instability, which is an important indicator of tumorigenesis.
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Introduction

The introduction of low-dose computed tomography (CT) 
for lung cancer screening, as well as CT imaging for other 
indications, has significantly increased the detection rate 
of pulmonary nodules in recent years, with approximately 
1.5 million cases estimated per year in the United States 
(1,2). Despite reducing lung cancer mortality through 
the detection of pulmonary nodules, low-dose CT has an 
extremely high false-positive rate (96.4%), which leads 
to unnecessary workups of benign nodules (3-5). The 
detective methods to make a difference between benign and 
malignant pulmonary nodules mainly include CT/positron 
emission tomography (PET)-CT, long-term follow-up 
CT scans or even invasive procedures like bronchoscopy, 
transthoracic fine-needle aspiration biopsy, and surgery. 
Size and growth rate of pulmonary nodules are the main 
indicators to assess probability of nodule malignancy. 
Usually, lung nodules measured more than 30 mm in 
diameter on CT imaging are more likely to be cancerous 
than smaller nodules. It is still challenging to evaluate the 
malignancy risk for lung nodules with diameters of less than 
30 mm only depending on CT scan. Long-term follow-
up CT scans and invasive procedures result in a significant 
burden as most small lung nodules are benign (6-9). Thus, 
non-invasive methods are urgently required to aid in 
the differentiation of benign from malignant pulmonary 
nodules.

Plasma cell-free DNA (cfDNA) are short DNA 
fragments of double-stranded DNA ranging around a 
modal size of ~166 bp circulating in the blood that are 
released by apoptotic or necrotic cells but also by active 
secretion of non-damaged cells. The half-life of cfDNA is 
relatively short with 16 min to 2.5 h in the blood. The level 
of cfDNA is much lower in plasma from healthy individuals 
than cancer patients. Plasma cfDNA have been successfully 
utilized in the detection and diagnosis of various cancer 
types, including hematological malignancies, breast cancer, 

osteosarcoma, and ovarian cancer (10,11). Circulating 
tumor DNA (ctDNA) accounts for a variable proportion of 
the total cfDNA (12-14). CtDNA is believed to contain the 
same genetic aberrations as the corresponding tumor. The 
potential utility of ctDNA for early diagnosis, detection 
of minimal residual disease and molecular genotyping has 
been explored in lung cancer (15,16). However, it is difficult 
to reliably detect mutated ctDNA in early-stage non-small 
cell lung cancer (NSCLC) due to the low abundance of 
ctDNA in cfDNA, which is estimated to be less than 0.01% 
in 50% of patients with stage I NSCLC (17,18). Mutation-
based cfDNA tests, which included the whole-exome 
sequencing (WES) and targeted multiple gene sequencing 
(Panel-seq) in early-stage NSCLC require ultra-deep 
coverage that are costly and technically challenging due to 
sequencing artifacts, vast mutational heterogeneity between 
patients, and the frequent occurrence of non-malignant 
somatic mutations in cfDNA, e.g., those that drive clonal 
hematopoiesis (12,19-22). Therefore, new non-invasive 
approaches other than mutation-based cfDNA tests should 
be explored.

Whole-genome sequencing (WGS) of cfDNA can 
identify chromosomal abnormalities such as copy number 
alterations (CNAs) in cancer (23,24). CNAs usually range 
from 1 Mb to 100+ Mb, spanning large genomic regions. 
Some studies have reported that, compared with point 
mutations, the detection of cancer-derived CNA events in 
cfDNA is likely to be a superior approach for ctDNA-based 
early cancer detection because ctDNA CNAs contribute 
a much larger number of ctDNA fragments to the total 
cfDNA per CNA event (24,25). CNAs have been previously 
identified to be specific biomarkers of lung malignancy 
(26,27). CfDNA fragmentomics, other than CNA events 
in cfDNA, also provides a way for non-invasive detection 
of lung cancer. It was reported that genome-wide cfDNA 
fragmentation analysis such as DNA evaluation of fragments 
for early interception (DELFI) approach can discriminate 
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lung cancer patients from non-cancer individuals (28-30). 
Non-invasive prenatal testing (NIPT) utilizes low genomic 
depth (<1×) to detect large chromosomal aberrations. With 
the widespread use of NIPT, some women have been found 
to have CNAs in their plasma originating from undiagnosed 
maternal cancer (31,32). These findings highlight the 
potential of detecting cfDNA CNAs in early-stage cancer.

The feasibility of discriminating between benign and 
malignant pulmonary nodules according to the WGS-
derived characteristics of cfDNA has not been adequately 
investigated (33). Compared to WES of plasma cfDNA, 
low-depth WGS (LD-WGS) was more reliable, more 
efficient, less expensive for the detection of CNAs. In this 
study, we developed a novel genome-wide approach to 
distinguish benign from malignant pulmonary nodules 
using LD-WGS of cfDNA. This method has the potential 
to provide a cost-effective, non-invasive diagnostic 
approach for the accurate diagnosis of pulmonary nodules. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://tlcr.
amegroups.com/article/view/10.21037/tlcr-22-647/rc).

Methods

Study population

Patients undergoing treatment for suspected lung cancer at 
Tianjin Medical University Cancer Institute and Hospital 
between June 2015 and August 2017 were considered for 
this study. All of the following inclusion criteria had to be 
fulfilled: (I) lung nodules were no more than 30 mm in 
diameter as determined by CT scan; (II) lung nodules were 
evaluated as malignant by radiologists and physicians, were 
undiagnosed, or were evaluated as benign but the patients 
preferred surgery; and (III) patients underwent surgical 
excision, bronchoscopic biopsy, or transthoracic biopsy. The 
exclusion criteria were as follows: (I) patients with other 
malignant tumors; (II) those with no pathological diagnosis; 
and (III) subtypes of lung malignancy were small cell lung 
cancer or pulmonary large cell neuroendocrine carcinoma. 
A total of 420 cases, including 131 patients with benign 
pulmonary nodules and 289 patients with NSCLC, were 
analyzed.

The initial diagnoses were obtained by CT. Plasma 
samples were collected 1–5 days before treatment and 
within 1 month after nodule detection. Pathological 
diagnosis was made on the basis of biopsy or surgical 
samples. The staging was according to the 8th Edition of 

the International Staging of Thoracic Malignancies and 
the histological subtype was according to the 2015 World 
Health Organization (WHO) classification of lung tumors 
(34,35). We collected the following clinicopathological 
data: age, sex, smoking status, histological subtype, stage, 
and CT results reported by the radiologist. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). This study was approved by the ethical 
committee of Tianjin Medical University Cancer Institute 
and Hospital (approval Nos. bc2016014, bc2018009, and 
bc2019091), and all participants provided written informed 
consent.

External independent dataset from The Chinese University 
of Hong Kong (CUHK) including 38 healthy controls and  
10 lung cancer patients was used for validation (36).

Sample preparation, library construction, and sequencing

A 5-mL sample of whole blood was collected from each 
patient in an ethylenediaminetetraacetic acid (EDTA) tube 
and processed immediately. Plasma and cellular components 
were separated by centrifugation at 1,600 ×g for 10 min 
at 4 ℃. Plasma was further centrifuged for 10 min at 
16,000 ×g at 4 ℃ to remove any remaining cellular debris 
and then stored at −80 ℃. CfDNA was extracted using a 
MagPure Circulating DNA KingFisher (KF) Kit (Magen, 
Guangzhou, China). The concentration of the extracted 
cfDNA was quantified by a Qubit 3.0 fluorometer (Life 
Technologies, Paisley, UK), and the size distribution was 
detected using an Agilent DNA High Sensitivity Kit on 
an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa 
Clara, CA, USA). The total cfDNA of each plasma sample 
was input for library preparation using the MGIEasy 
cfDNA Library Prep Set (MGI-Tech, Shenzhen, China).

CfDNA isolation and WGS library construction were 
both performed using a MGISP-960 High-Throughput 
Automated Sample Preparation System (MGI-Tech) 
according to the manufacturer’s protocol. Briefly, purified 
cfDNA was subjected to end repair, A-tailing, ligation 
modules, polymerase chain reaction (PCR) amplification, 
and single-strand circularization. All single-strand circular 
DNA libraries were sequenced on the MGISEQ-2000 
platform (MGI-Tech) with paired-end reads to generate 
approximately 1.5–3 Gb of whole-genome data for each 
sample with a coverage of 37% at 1× depth (MGI-Tech). 
The quantity of cfDNA is shown in (available online: 
https://cdn.amegroups.cn/static/public/tlcr-22-647-1.xlsx).

https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-647/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-647/rc
https://cdn.amegroups.cn/static/public/tlcr-22-647-1.xlsx
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Calculation of weighted reads distribution difference 
(WRDD)

Following WGS, the sequencing reads were aligned to 
the hg38 reference genome. All autosomes were joined 
together and divided into a series of fixed-length windows 
(30 kb/window) along the DNA. We then counted the 
read number of each sample within each window of DNA. 
Differences in the read counts along a series of regions 
comprised the read distribution pattern, which reflected the 
bias of the read distribution related to the sample type.

For each sample, we combined the varying number 
of read windows to create a region and observed the 
features of this region. To identify the critical distribution 
characteristics of the reads across the genome, we defined 
the WRDD, which emphasizes CNAs in regions of 
the whole genome and provides additional genomic 
information. If a region consisted of n windows, the read 
number matrix x of a sample set with m samples within the 
region could be described as:
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where xi,j is the read number of sample i in window j. The 
weight value w of these n windows could be calculated as:
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where the function variance calculates the variance value 
of the read numbers of m samples in each window. The 
average read number of each window was used as the 
benchmark. The read numbers of benchmark b of these n 
windows could be calculated as:
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where the function mean calculates the mean value of the 
read number of m samples in each window. The weighted 
sum value Si of sample i could be calculated as:
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=
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where the function scale calculates the scaled values of a 
given number list. Read numbers were scaled by sample. If 
the sum of the weighted differences in the read number of 
benign values in a given region had a higher variance than 
that of the malignant samples, that region was referred to as 
a benign variable (BV) region; otherwise, it was referred as 
a malignant variable (MV) region. The WRDD value was 
calculated differently for BV regions than for MV regions, 
as follows:

, for BV region
, for MV region
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

S
W

S 	 [5]

Calculation of t-values

For a given region, a t-value was calculated to measure 
the ability of the region to differentiate sample types. For 
a specific region, the t-value was calculated according to 
the WRDD values of the two types of samples using the 
following formula:

1 2

2 2
1 2

1 2

x x
t

S S
n n

−
=

+ 	 [6]

where 1x  and 2x  are the means of the two WRDD value 
lists that originate from the two sample sets, while n1 and n2 
are the element numbers of the two sample sets, and S1 and 
S2 are their standard deviation (SD) values, respectively. 
A higher t-value was indicative of a better ability of a 
particular region to differentiate between the sample types.

Design of the genetic algorithm

To explore regions with high t-values, we developed a 
modified genetic algorithm. First, a simple strategy was 
adopted to generate a series of original regions. The 
genetic algorithm was then used to perform continuous 
combination and separation operations on these regions to 
obtain new regions with higher t-values.

(I)	 Generation of the original regions. A continuous 
series of n windows at location i was combined with 
another series of n windows located 2jn windows 
downstream of the location to obtain an original 
region consisting of 2n windows. The original 
region that began at the window i was defined as:
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	 where n is the number of a series of continuous 
windows (n=5) and N is the total number of 
windows (N=95,833). A certain distance between 
the two series of windows was specified to ensure 
that the regions possessed discriminatory abilities 
across long distances.

(II)	 Combination and separation of regions. The 
genetic algorithm involved the combination of 
two parental regions for information exchange and 
the generation of offspring regions. All original 
regions were put in a regional pool for the random 
selection of parental regions to generate offspring 
regions. The probability that region i was selected 
as one of the parental regions was as follows:
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	 where N is the total number of all existing regions 
and ti is the t-value of the i-th region. Given that 
region x had been selected as the first parental 
region, the probability that another region i was 
selected as the second parental region was as 
follows:
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	 where N is the total number of all existing regions, 
mi is the mean of the positions of all windows 
contained by the region i, and ti is the t-value of the 
i-th region. The inclusion of the term |mx−mi| was 
set for the preferential selection of regions with 
a shorter inter-regional distance as the parental 
regions. Following the selection of both parental 
regions, 20% of the unified windows included in 
the two parental regions were randomly selected by 
sampling with the replacement and deleting it to 
form the offspring region. The obtained offspring 
region was then added to the regional pool for the 
next round of selection. The parental regions were 
not deleted during the entire process. The offspring 
region F generated by two parental regions P1 and 
P2 and probability p were defined as:

	 ( ) ( )1 2 1 2 1 2, , ,F P P p P P S p P P= −  	 [10]

	 where S(p,s) is the subset of p% elements sampled 
randomly from set s with replacement (in this work, 
p=20%). The offspring generation was analyzed 
300,000 times to generate the same number of 
regions, which balanced the costs and potential 
effects.

Benign and malignant diagnostic (BEMAD) model 
construction and prediction

BV and MV regions with the highest t-values were selected 
to construct the BEMAD model. When using the model 
with N regions to determine a sample’s type, the sum of 
the WRDDs of the sample in the N responding regions 
was calculated and used as the score of the sample for 
prediction.

To eliminate the influence of the imbalance in t-values 
between regions of different types, we separately calculated 
the sample scores for the MV and BV regions. The sums of 
the scores in BV and MV regions were called the BV and 
MV region scores, respectively. We then scaled the BV and 
MV region scores of a sample and combined them to obtain 
its final score:

bengin bengin train malignant malignant train

bengin train malignant train

score score score score
score

S S
− −

− −

− −
= + 	 [11]

where scorebenign is the BV region score of a sample, scoremalignant 
is the MV region score, bengin trainscore −  is the mean BV score 
of the corresponding training cohort, bengin trainS −  is its SD 
value, malignant trainscore −  is the mean of the MV region score 
of the corresponding training cohort, and malignant trainS −  is its 
SD value. We determined whether a sample was benign or 
malignant based on its score.

The process of developing the BEMAD model according 
to the WRDD was as follows (Figure 1):

(I)	 A region was generated by combining windows in 
the genome (Figure 1A). The whole genome was 
divided into a series of 30-kilo-base pair fixed-
length and non-overlapping windows, which 
resulted in 95,833 windows including trans-
chromosomal windows. The average read number 
in a series of benign and malignant samples was 
calculated as the benchmark for each window. 
Regions were generated by combining windows 
that were selected with a modified genetic 
algorithm.

(II)	 The WRDD value of a sample in a region was 
calculated by converting the sum of the weighted 
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Figure 1 Flowchart of the BEMAD algorithm model development. (A) Generation of region. (B) Calculation of WRDD. (C) Model-
construction & prediction. WRDD, weighted reads distribution difference; MV, malignant variable; BV, benign variable; BEMAD, benign 
and malignant diagnostic.
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differences of read numbers between the sample 
and the benchmark of the windows contained 
within a  region (Figure  1B ) .  To el iminate 
differences in the read number of the sample and 
its benchmark in that region, we scaled the read 
numbers of the sample in all windows within a 
region to ensure that the total read numbers were 
the same at the regional level. The read numbers 
of the benchmarks were also scaled in the same 
way. Given that the sum values of benign samples 
were further away from 0 (above or under) in the 
BV regions, while those of malignant samples were 
closer to 0, we converted the sum values to their 
absolute values to clearly separate them, which 
resulted in higher absolute values for the benign 

samples. The sum values in MV regions were 
converted using the same method, resulting in 
higher absolute values for the malignant samples. 
To ensure that the absolute values of the malignant 
samples were higher than those of the benign 
samples in both the BV and MV regions, we further 
converted the absolute values in the BV regions to 
their inverse values. To summarize, the WRDD of 
BV regions = −|sum|, while the WRDD for MV 
regions = |sum|. A t-value was used to evaluate the 
discrimination capacity of the regions in the benign 
and malignant groups. The two WRDD value sets 
obtained from the two sample groups were then 
used to calculate the t-value of a region; a higher 
t-value was indicative of a greater ability of a region 
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to distinguish the respective sample group.
(III)	 Regions with the top x of t-values were selected for 

the model construction (Figure 1C). The sum of the 
WRDDs within the regions generated the score of 
a sample, which was used to predict whether the 
sample was benign or malignant.

Statistical analyses

All statistical analyses were performed using R version 3.6.3. 
The area under the receiver operating characteristic (ROC) 
curve (AUC) values, 95% confidence intervals (CIs), cut-off 
value related to the maximum AUC, and the corresponding 
specificity and sensitivity from the model output were 
obtained with the pROC (v.1.16.2) R package (37). The 
Mann-Whitney U test was performed to determine the 
differences in score distributions between two groups. 
The Student’s t-test was used to measure the differences 
in clinicopathological factors with continuous variables 
(e.g., age) between patients with benign and malignant 
pulmonary nodules, and Fisher’s exact test was performed to 
measure the differences in clinicopathological features with 
discrete variables (e.g., sex) using the built-in functions, 
“t.test” and “fisher.test”, respectively, of the current version 
of R. The counting of read numbers was performed using 
“readcounter”, a tool in HMMcopy (Bioconductor R 
package version 1.32.0.). The investigators were not blinded 
to the groups during experiments and outcome assessments. 
A P value of <0.05 indicated statistical significance.

Results

Patients’ features

We retrospectively analyzed plasma samples from 420 
individuals with lung nodules of ≤30 mm diameter 
according to CT images (Table 1). Of these, 289 (69%) 
were NSCLC patients [adenocarcinoma, n=240 (83%); and 
squamous cell carcinoma, n=49 (17%)], which were referred 
to as malignant samples. The remaining 131 (31%) patients 
had benign pulmonary nodules [cyst, n=4 (3%); fibrosis, 
n=7 (5%); granuloma, n=24 (18%); hamartoma, n=34 (26%); 
inflammation, n=35 (27%); tuberculosis, n=17 (13%); 
other cases, n=10 (8%)], which were referred to as benign 
samples. Of the 289 NSCLC patients, 247 (85%) were stage 
I (229 of whom were stage IA and 18 were stage IB).

The malignant and benign samples were matched for 
sex, smoking status, and pack-years of smoking (P>0.05). 

NSCLC patients were older compared to individuals with 
benign pulmonary nodules (P=7.70e–7; Student’s t-test). 
The mean nodule size of the malignant samples was larger 
than that of the benign samples (P=0.042; Student’s t-test). 
The samples were randomly divided into a training cohort 
(n=360, including 101 benign samples and 259 malignant 
samples) and an independent validation cohort (n=60, 
including 30 benign samples and 30 malignant samples) at 
a ratio of 6:1. For the independent validation cohort, we 
limited the ratio of benign to malignant samples to 1:1. A 
workflow of the study is shown in Figure S1.

Development of the BEMAD model

We designed a procedure with 10-fold cross-validation 
in the training cohort (Figure 2). Higher t-values were 
identified in the BV regions compared with the MV 
regions. Approximately 99% of regions with the top 1,000 
t-values were BV regions. Owing to the large differences 
in t-values between the BV and MV regions, the two 
types of regions were analyzed separately. BV regions with 
the 10 highest t-values were chosen first for the model 
construction (Figure 2A, available online: https://cdn.
amegroups.cn/static/public/tlcr-22-647-2.xlsx). The mean 
AUC in 10 test sets of the BV region-based model was 0.8 
(95% CI: 0.73–0.86). To explore the distribution of sample 
scores in different histological subtypes, we compared them 
in 10 test sets. We first normalized the scores from the 
same dataset to eliminate the differences in scores among 
the different test sets. We found that the average score of 
the malignant samples was higher than that of the benign 
samples (P=2.6e–20; Mann-Whitney U test; Figure 2A). 
There was no difference between the average scores of 
adenocarcinomas and squamous cell carcinomas.

Subsequently, MV regions with the 10 highest t-values 
were selected to run the same procedure as the construction 
of the BV-based model (Figure 2B, available online: https://
cdn.amegroups.cn/static/public/tlcr-22-647-2.xlsx). The 
MV region-based model obtained a mean AUC value of 
0.72 (95% CI: 0.65–0.78). The score distributions also 
revealed that malignant samples had a higher average 
score (P=4.0e–11; Mann-Whitney U test; Figure 2B), and 
there was no difference between the average scores of 
adenocarcinomas and squamous cell carcinomas.

Considering the significant differences between the 
performances of the two models constructed using the top 
10 BV regions and the top 10 MV regions, we combined 
these 20 regions for the construction of the BEMAD model 

https://cdn.amegroups.cn/static/public/TLCR-22-647-Supplementary.pdf
https://cdn.amegroups.cn/static/public/tlcr-22-647-2.xlsx
https://cdn.amegroups.cn/static/public/tlcr-22-647-2.xlsx
https://cdn.amegroups.cn/static/public/tlcr-22-647-2.xlsx
https://cdn.amegroups.cn/static/public/tlcr-22-647-2.xlsx
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Table 1 The clinicopathological characteristics of the included patients

Characteristics
Total Training cohort Validation cohort

Benign Malignant P value Benign Malignant P value Benign Malignant P value

Count, n [%] 131 [31] 289 [69] – 101 [28] 259 [72] – 30 [50] 30 [50] –

Age, mean ± SD 53±10 59±8.4 7.70E-07 54±10 59±8.3 2.40E-05 52±12 57±9.3 0.037

Sex, n [%] 0.074 0.24 0.29

Female 55 [42] 149 [52] 45 [45] 134 [52] 10 [33] 15 [50]

Male 76 [58] 140 [48] 56 [55] 125 [48] 20 [67] 15 [50]

Smoking, n [%] 0.83 0.81 1

No 67 [51] 153 [53] 51 [50] 135 [52] 16 [53] 17 [57]

Yes 64 [49] 136 [47] 50 [50] 124 [48] 14 [47] 13 [43]

Smoking-years (for smokers only), 
mean ± SD

29±12 32±13 0.088 29±12 32±13 0.14 29±13 34±13 0.35

Pack-years (for smokers only), 
mean ± SD

26±17 22±14 0.18 25±16 22±14 0.26 28±23 24±13 0.59

Nodule size (mm), mean ± SD 19±8.1 21±7.4 0.042 19±8.2 21±7.5 0.029 21±8 21±7.1 0.72

Pathological stage, n [%] – – –

I – 247 [85] – 224 [86] – 23 [77]

II – 15 [5] – 12 [5] – 3 [10]

III – 27 [9] – 23 [9] – 4 [13]

Subtype, n [%] – – –

AD – 240 [83] – 216 [83] – 24 [80]

SC – 49 [17] – 43 [17] – 6 [20]

Cyst 4 [3] – 3 [3] – 1 [3] –

Fibrosis 7 [5] – 4 [4] – 3 [10] –

Granuloma 24 [18] – 20 [20] – 4 [13] –

Hamartoma 34 [26] – 29 [29] – 5 [17] –

Inflammation 35 [27] – 29 [29] – 6 [20] –

Tuberculosis 17 [13] – 11 [11] – 6 [20] –

Others 10 [8] – 5 [5] – 5 [17] –

Procedure type, n [%] – – –

Surgical excision 119 [91] 284 [98] – – – –

Bronchoscopic biopsy 0 [0] 3 [1] – – – –

transthoracic biopsy 12 [9] 2 [1] – – – –

When comparing age/smoking-years/pack-years/nodule size, Student’s t-test was used to calculate the P value; when comparing 
sex/smoking, Fisher’s exact test was used to calculate the P value. SD, standard deviation; AD, adenocarcinoma; SC, squamous cell 
carcinoma.
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(Figure 2C). Since the t-values of the top 10 BV regions 
were higher than those of the top 10 MV regions, the 
direct combination of the regions would have weakened 
the contribution of the MV regions toward the prediction 
results. To resolve this issue, we separately normalized 
the scores of the MV and BV regions of each sample and 
summed the two normalized scores to obtain the final score. 

The average AUC increased to 0.84 (95% CI: 0.80–0.89), 
with a sensitivity of 80% and a specificity of 83%.

We compared our method to other cfDNA genome-
wide cancer detection approaches, including ichorCNA 
and DELFI using the LUCAS cohort (29,38). The DELFI 
approach achieved an AUC of 0.94 (95% CI: 0.91–0.98). 
Our BEMAD model provided a similar performance, with 
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an average AUC of 0.93 (95% CI: 0.91–0.95). Meanwhile, 
the ichorCNA approach obtained an AUC of 0.80 (95% 
CI: 0.73–0.87) (Figure S2). These results suggested that 
our method was comparable to the DELFI approach and 
superior to the ichorCNA approach.

BEMAD algorithm model validation

The BEMAD algorithm model was validated in an 
independent validation cohort containing 30 benign samples 
and 30 malignant samples. The model obtained an AUC value 
of 0.87 (95% CI: 0.82–0.97) (Figure 3A), and the sensitivity 
and specificity were 74% and 86%, respectively. The 
distributions of the benign and malignant sample scores were 
similar to those observed in the training cohort, with a higher 
average score obtained in the malignant samples (Figure 3B). 
Additionally, we used another external independent dataset 
from The CUHK including 38 healthy control and 10 lung 
cancer patients for validation (36). Our model’s performance 
achieved 0.84 (95% CI: 0.70–0.97) of AUC, with a sensitivity 
of 0.8 and a specificity of 0.82 (Figure S3).

A retrospective review of the patients’ CT reports 
revealed that there were 47 undiagnosed lung nodules in the 
training cohort and nine undiagnosed lung nodules in the 

validation cohort. According to the pathological diagnoses, 
the BEMAD model correctly identified 25 of 28 (89%) 
benign lung nodules and 15 of 19 (79%) malignant lung 
nodules in the training cohort, and 7 (100%) benign and 
2 (100%) malignant lung nodules in the validation cohort. 
This indicated that our cfDNA-based method could further 
stratify undiagnosed lung nodules, aiding in CT to improve 
the differential diagnosis of lung nodules and reducing 
unnecessary invasive procedures.

Influence of clinicopathological parameters on the 
performance of the BEMAD algorithm model

To determine whether clinicopathological factors affected 
the performance of the BEMAD model, we analyzed the 
effects of sex, age, smoking status, and nodule size on the 
score distribution of the samples. The differences in the 
score distributions of benign and malignant samples were 
compared according to sex (female vs. male), smoking status 
(smoking vs. non-smoking), age (<60 vs. ≥60 years), and 
nodule size (≤10 vs. >10 mm) (Figure 4A-4D). All differences 
in score distributions in the benign and malignant samples 
were non-significant (P>0.05; Mann-Whitney U test), 
indicating that the BEMAD model was robust and unlikely 
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to be influenced by clinicopathological factors.

Characteristics of critical windows in the BEMAD model

To better understand the characteristics of selected 
genomic regions in the BEMAD model and their potential 
correlation with tumorigenesis, we analyzed the features of 
windows within each genomic region that was used for the 
construction of the BEMAD model. We found that some 
windows were critical in distinguishing malignant from 
benign samples, as demonstrated by the highest t-value 
among the windows in that region. We also observed that 
the critical window for 50% of the MV regions was window 
#57113 (chr10:38503000–38532999 in the hg38 reference 
genome), while the critical window for the remaining MV 
regions was window #92938 (chr21:10657000–10686999), 
and that for all BV regions was #92863 (chr21:8407000–
8436999).

Interestingly, we found that many repeated motifs 
within these three windows could be classified into one of 
three types: “AATGG” for #57113, “TCCAT” for #92938, 
and “TCTC” for #92863. The first two repeated motifs 
were associated with microsatellite repeats, influencing 
microsatellite instability, which is a critical marker of 

tumorigenesis (39,40). The third repeated motif was novel 
and should be studied in the future.

Indeed, we found that in the region with numerous 
“AATGG” and “TCCAT” motifs, the differences in read 
numbers between benign and malignant samples were 
more significant compared with their upstream regions 
(Figure 5A,5B). However, this was not observed for the 
“TCTC” motif. These findings indicated that microsatellite 
instability is a feature of critical windows in the BEMAD 
model.

Discussion

The precise diagnosis of lung nodules is challenging. In 
clinical practice, 10–30% of resected lung nodules are 
found to be benign, which is a result of the limitations of 
radiological detection and the inability of CT to accurately 
distinguish benign from malignant nodules (41). For these 
patients, surgery represents overtreatment. Therefore, the 
development of economical non-invasive approaches that 
can discriminate benign from malignant pulmonary nodules 
is extremely valuable to aid diagnosis and reduce the 
number of unnecessary surgeries performed in patients with 
benign tumors. In this study, we developed an algorithm 
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Figure 5 Relationship between the frequency of repeated motifs and differences in read number. (A) Analysis of the “AATGG” motif, 
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TCCAT nucleotide base. All 30 windows covered the range of chr21:10597000–10686999.

that utilized cfDNA LD-WGS data to differentiate between 
benign and malignant pulmonary nodules.

Cancer-associated CNAs have been detected in the 
cfDNA of patients with cancer, underscoring their potential 
clinical applications for the screening, early detection, 
and monitoring of human cancer (23,24,42-44). However, 
CNAs only reflect copy number variation relative to normal 
controls in some specific locations in the genome. Our 
approach introduces a new bioinformatics analysis to reflect 
genomic changes, namely WRDD. WRDD identifies 
differences in read numbers at multiple locations within 
a genomic region and amplifies local differences through 
weighting. In addition, it offers more information than 

CNAs, which is critical for capturing the extremely weak 
signals of cfDNA in early-stage NSCLC. Furthermore, 
WRDD allows for discontinuity within a region, which 
enables the elimination of unimportant windows when a 
region spans a large area. Although both CNAs and WRDD 
reflect abnormal gains or losses in the genome, WRDD 
serves as an extension of CNAs that can provide additional 
signal details and can also reflect the early characteristics of 
genomic instability in NSCLC.

To confirm the suitable performance of our method, we 
compared it to the other approaches including ichorCNA 
and DELFI using their cohort (29,30). Our BEMAD 
model achieved an average AUC of 0.93, which was almost 
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identical to that obtained by DELFI (AUC of 0.94) and 
superior to that of ichorCNA (AUC of 0.80). Notably, 
the percentage of stage I patients in their cohort (training 
cohort 15/129, validation cohort 28/46) in which detection 
is more challenging than the later stages was far smaller 
than ours (training cohort 224/259, validation cohort 
23/30). Therefore, the superior approach still needs to be 
validated with cohorts that include a large number of early-
stage patients.

In recent years, cfDNA methylation patterns have 
demonstrated their potential utility in the early detection 
of several cancer types including lung cancer. However, 
various methods have been applied in different studies, 
including cfDNA methylation and bioinformatics analyses. 
Moreover, most of these studies focused on distinguishing 
cancer patients from healthy individuals, and few studies 
have explored the differentiation of benign from malignant 
lesions (33,45-49). Liang et al. attempted to discriminate 
between benign and malignant pulmonary nodule samples 
using cfDNA whole-genome bisulfite sequencing data; 
their model produced an AUC value of 0.839 in a training 
cohort containing 40 malignant and 26 benign samples, 
and an AUC of 0.816 in an independent validation 
cohort containing 39 malignant and 27 benign samples. 
In comparison, this study obtained AUC values of 0.84 
and 0.87, respectively (33). Therefore, the performance 
of our WRDD-based cfDNA detection method for the 
discrimination of benign and malignant pulmonary nodules 
is comparable to that of the methylation signal-based 
cfDNA diagnostic method. Notably, inflammation-related 
benign diseases (inflammation and inflammatory granuloma), 
which are often erroneously classified as malignant in 
clinical practice, accounted for a smaller proportion of the 
benign samples in the study by Liang et al. (11/53=20.7%, 
as compared with 59/131=45.0% in the present study) (33). 
In addition, our LD-WGS approach is easier to implement 
in molecular testing laboratories. DNA methylation analysis 
requires a higher cfDNA amount, at 10 ng, which is 4–5 times  
greater than that required by our model. DNA methylation 
analysis also requires the genome coverage to be greater 
than 30×, which limits the use of this technique in clinical 
practice.

There were reports about the potential application 
of  c fDNA from other  l iquid biopsy sources  l ike 
bronchoalveolar lavage fluid (BALF) for identifying lung 
cancer (50,51). However, the performance of BALF cfDNA 
was not superior to that of plasma cfDNA to differentiate 
malignant from benign pulmonary nodules by analyzing 

the methylation and mutation profiling of cfDNA (50). It 
will be interesting to compare CNAs signatures from BALF 
cfDNA to our approach from plasma cfDNA for identifying 
lung cancer. Considering that obtaining BALF is invasive 
compared with collecting plasma, plasma cfDNA could be 
more suitable for early detection of lung cancer.

The differential diagnosis of pulmonary nodules of  
6–20 mm is challenging for radiologists and thoracic 
surgeons, and usually requires long-term CT surveillance 
and even invasive procedures (8). In our cohort, the 
AUC value of pulmonary nodules of 10–20 mm was 0.83, 
while that of nodules ≤10 mm was 0.86 (Figure S4). The 
performance of the BEMAD model in differentiating 
benign from malignant lung nodules was not influenced 
by nodule size. For the undiagnosed lung nodules in our 
training cohort, the BEMAD model correctly identified 
89% of benign nodules and 79% of malignant lung nodules. 
The real-world impact of this model is that approximately 
50% of patients with benign lung nodules would avoid 
longitudinal radiographical follow-up, as recommended by 
the Fleischner Society guidelines (8), or invasive procedures. 
These results suggest that our model has the potential to be 
used as an adjuvant with CT in most patients with benign 
nodules to avoid unnecessary surgery.

To explore the underlying biological explanations of 
differentiation between benign and malignant samples 
based on the critical window for BV and MV regions used 
for the construction of the BEMAD model, we annotated 
the regions. These regions are mostly intergenic regions, 
which could act to control the expression of nearby genes. 
We noticed that windows #57113 and #92863 included a 
significant number of non-coding RNAs, while window 
#92938 nearby included immune-related genes (available 
online: https://cdn.amegroups.cn/static/public/tlcr-22-647-
3.xlsx). It is known that non-coding RNAs and immune 
regulation play important roles in carcinogenesis (52,53), 
which could be involved in the differentiation of benign and 
malignant samples.

The present study has some limitations that should 
be noted. Firstly, the study lacks completely independent 
validation cohorts from another center. Thus, it would be 
useful to validate the model at other centers to assess the 
scalability of our results in other populations. Secondly, 
radiomic nodule characteristics such as nodule quality 
(solid, part-solid, or non-solid) and spiculation were not 
available in our cohort; therefore, it may be useful to assess 
how radiomic characteristics affect the performance of our 
model, which would in turn enable a direct comparison with 

https://cdn.amegroups.cn/static/public/TLCR-22-647-Supplementary.pdf
https://cdn.amegroups.cn/static/public/tlcr-22-647-3.xlsx
https://cdn.amegroups.cn/static/public/tlcr-22-647-3.xlsx
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the Veterans Affairs SNAP Cooperative Study Group and 
Mayo Clinic models (54,55). Thirdly, all samples included 
in this study were retrospective; thus, a prospective study to 
assess the performance of the BEMAD model is required 
for clinical application. It is worth noting that NIPT has 
been widely used in reproductive medicine for robust 
clinical evaluation due to the relatively low amount of 
cfDNA required, the use of genomic sequencing data, and 
the convenient experimental process with high sensitivity 
and specificity. Our experimental process could be easily 
plugged into the current NIPT clinical workflow for whole-
genome library construction and data generation using 
cfDNA. When the BEMAD model was deployed in the 
diagnostic computational system, it could efficiently provide 
an accurate evaluation of benign and malignant pulmonary 
nodules. Hence, our approach could guide subsequent 
clinical decisions to improve patient care.

The advantages of our approach are that LD-WGS 
is inexpensive, the method referring to the workflow of 
NIPT is feasible, and there are no training issues that arise 
when introducing this approach to clinical practice. So it is 
worth wide application in diagnosis of pulmonary nodules 
in clinical. As an auxiliary screening technology for lung 
cancer, the input data (LD-WGS cfDNA) can be generated 
by existing conventional non-invasive prenatal screening 
and diagnostic technologies (such as NIPT), with lower 
sampling requirements and easier experimental accessibility 
than methylation sequencing technology. Furthermore, the 
cost of our approach is one-tenth that of conventional WGS 
(3 Gb base pair/sample vs. 30 Gb base pair/sample), and 
much lower than mutation-based methods, such as WES 
and Panel-seq (a minimum raw data of 100G base pair/
sample and 20G base pair/sample). It will be important to 
explore combining the optimized BEMAD algorithm model 
with multi-omics biomarkers like the critical features from 
the miRNA expression and certain methylation variable 
positions of cfDNA used for early pan-cancer screening 
to further improve the sensitivity and specificity of benign 
and malignant diagnoses of pulmonary nodules before its 
clinical application (56).

Conclusions

In conclusion, we developed a novel non-invasive approach 
for discriminating between benign and malignant 
pulmonary nodules. This approach does not necessitate 
of prior knowledge of the tumor mutation profile, only 
requires a small amount of plasma and less than 3 Gb 

genomic data for analysis. In addition, the BEMAD 
algorithm model is highly robust and is not affected by the 
most common clinicopathological risk factors. CfDNA 
LD-WGS could serve as a parallel technique alongside 
CT imaging to further stratify undiagnosed lung nodules, 
reducing unnecessary invasive procedures in patients with 
benign lung nodules.
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Supplementary

Figure S1 Workflow of this study. CT, computed tomography; WGS, whole-genome sequencing; LD, low-depth.

Figure S2 Comparison between the other two methods (ichorCNA and DELFI) to our method using the LUCAS cohort. AUC, area under 
the receiver operating characteristic curve; CI, confidence interval; DELFI, DNA evaluation of fragments for early interception; CNA, copy 
number alteration; BEMAD, benign and malignant diagnostic; LUCAS, Longitudinal Urban Cohort Ageing Study.
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Figure S3 An external independent dataset from The CUHK including 38 healthy control and 10 lung cancer patients for validation. AUC, 
area under the receiver operating characteristic curve; CI, confidence interval; CUHK, Chinese University of Hong Kong.

Figure S4 Performance of the BEMAD model to diagnose pulmonary nodules of 6–20 mm. AUC, area under the receiver operating 
characteristic curve; BEMAD, benign and malignant diagnostic.
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