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Background: There is a risk of over investigation and delayed treatment in the work up of solid nodules. 
Thus, the aim of our study was to develop and validate an integrated model that estimates the malignant risk 
for indeterminate pulmonary solid nodules (IPSNs).
Methods: Patients included in this study with IPSNs who was diagnosed malignant or benign by 
histopathology. Univariate and multivariate logistic regression were used to build integrated model based on 
clinical, circulating tumor cells (CTCs) and radiomics features. The performance of the integrated model 
was estimated by applying receiver operating characteristic (ROC) analysis, and tested in different nodules 
size and intermediate risk IPSNs. Net reclassification index (NRI) was applied to quantify the additional 
benefit derived from the integrated model.
Results: The integrated model yielded areas under the ROC curves (AUCs) of 0.83 and 0.76 in internal 
and external set, respectively, outperforming CTCs (0.70, P=0.001; 0.68, P=0.128), the Mayo clinical model 
(0.68, P<0.001; 0.55, P=0.007), the and radiomics model (0.72, P=0.002; 0.67, P=0.050) in both validation 
sets. Robust performance with high sensitivity up to 98% was also maintained in IPSNs with different 
solid size and intermediate risk probability. The performance of the integrated model was comparable 
with positron emission tomography/computed tomography (PET-CT) examination (P=0.308) among the 
participants with established PET-CT records. NRI demonstrated that the integrated model provided net 
reclassification of at least 10% on the external validation set compared with single CTCs test.
Conclusions: The integrated model could complement conventional risk models to improve the diagnosis 
of IPSNs, which is not inferior to PET-CT and could help to guide clinician’s decision-making on clinically 
specific population.
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Introduction

Increasing evidence demonstrates that compared with 
lung cancer manifesting as radiological subsolid nodules, 
those presenting as pure solid nodules have a higher rate of 
occult lymph node metastasis, more malignant behaviors, 
and poorer prognosis, even after surgical resection (1,2). 
The majority of pure solid lung cancers have reached 
an advanced stage at the time of diagnosis; hence, early 
detection is critical to effective treatment and long-term 
survival of these patients (3,4). However, early-stage lung 
cancer always manifests as solitary lung nodules without any 
typical symptoms, and the management of indeterminate 
pulmonary solid nodules (IPSNs) always involves an 
unacceptable rate of invasive diagnostic procedures for 
patients with benign disease, and associated morbidities of 
delayed therapies for those with malignant disease (5-8). 
Thus, accurate and timely diagnosis of IPSNs is important 
to reduce patient mortality and overtreatment.

Circulating tumor cells (CTCs) in the blood of patients 
with cancer, a subclass of tumor cells able to migrate from 
the primary site to nearby blood and/or lymphatic vessels 
and survive in the challenging micro-environment of the 
blood-stream, have gained increasing interest (9). The 
levels of CTCs could reflect biological aggressiveness 
(10,11); hence, it they are often isolated from the peripheral 
blood of patients with cancer for research in the diagnosis 
and prognosis of malignant tumors, with promising results 
(12-15). Nevertheless, in previous research, the potential 
role of CTCs testing for the diagnosis of nodules has 
been limited, with an area under the receiver operating 
characteristic (ROC) curve (AUC) no higher than 0.8, 
and with low sensitivity (30–89%) (16-18). Several recent 

studies have reported that the combination of CTCs and 
additional dimensional features (e.g., nodules radiological 
size, serum tumor marker) could significantly improve 
the differentiation ability of small lung nodules with 
high sensitivity and specificity (13,17,19). Besides, the 
combination of CTCs and artificial intelligence imaging 
was also shown to be an independent indicator for lung 
adenocarcinoma invasiveness in our previously published 
study (20). However, compared with traditional radiological 
features, radiomics has been shown to be a more effective 
clinical application tool for differentiating lung nodules in the 
early screening for lung cancer (21), since it can quickly extract 
a larger number of quantitative features from radiological 
images using high-throughput calculations (22-24). To date, 
there has been no study assessing the potential of integrated 
model constructed by incorporating quantitative radiomic 
signatures with CTCs in classifying IPSNs. 

Here, we are aimed to develop a radio-biological model 
by combining clinical variables and radiomics features 
with the level of CTCs, and hypothesized that this 
integrated risk model might provide a novel insight into 
risk probability of IPSNs, complementing CTCs testing to 
form an effective platform for the early-stage lung cancer 
detection. We present the following article in accordance 
with the TRIPOD reporting checklist (available at https://
tlcr.amegroups.com/article/view/10.21037/tlcr-23-145/rc).

Methods

Ethical statement

This study was approved by the Ethics Committees of 
Shanghai Pulmonary Hospital (No. L21-022) and The First 
Hospital of Lanzhou University (No. LDYYLL2023-40). 
The study conformed to the provisions of the Declaration of 
Helsinki (as revised in 2013). The requirement for written 
informed consent was waived for the retrospective cohort. 
The informed consent process is shown in (Appendix 1).

Patient selection

Figure 1 shows the flowchart of patient selection. Patients 
with indeterminate lung lesions at chest computed 
tomography  (CT) ,  who underwent  patholog ica l 
examination in Shanghai Pulmonary Hospital (SPH cohort) 
between January 2021 and April 2021 were retrospectively 
included in this study. All patients included in our study are 
solid nodules at chest CT, and the histopathological report. 

Highlight box

Key findings
•	 The combination of CTCs with radiomics could complement 

conventional clinical models in improving the individual 
management for patients with pulmonary pure-solid nodules.

What is known and what is new? 
•	 The CTCs-based integrated model provided an effective and 

robust performance in pulmonary nodules diagnosis.
•	 Our study provides a new non-invasive and accurate method for 

early-stage lung cancer detection.

What is the implication, and what should change now? 
•	 Multi-dimensional features were of great necessity for early-stage 

lung cancer detection.
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Patients with multiple lung lesions (n=970), subsolid lesions 
(n=1,754), and receiving any treatment before CTCs testing 
(n=31) were excluded; patients with radiological nodules 
larger than 30 mm (n=68) and no definitely pathological 
report  (n=32) were also excluded.  To develop an 
independent validation set, patients who underwent CTCs 
testing and pathological examination from August 2019 to 
July 2021 in the First Hospital of Lanzhou University were 
retrospectively enrolled. The entire inclusion and exclusion 
criteria are detailed in Figure 1. Clinical characteristics 
were retrospectively collected from medical records. The 
maximum value of standardized uptake value (SUVmax) of 
patients who underwent positron emission tomography/
CT (PET-CT) examination one month before pathological 
examination was also collected.

Nodules segmentation and radiomics model construction

The detailed procedures of chest CT scanning and 
image acquisition are detailed in Supplementary Material 
(Appendix 2). Images of IPSNs were subjected to manual 

segmentation by 3 researchers (S.S., X.M., and H.H.) 
at the lung window setting [level, −450 Hounsfield unit 
(HU); width, 1,500 HU] using 3D-Slicer software, version 
4.10.1 (www.slicer.org), and then verified and corrected by 
2 senior researchers (M.Z. and Y.S.). Feature extraction 
was performed using the PyRadiomics package in Python, 
version 3.7 (www.python.org). Feature selection was 
conducted by sequentially applying minimum redundancy 
maximum relevance (mRMR) and least absolute shrinkage 
and selection operator (LASSO) techniques due to the high 
dimensionality and multicollinearity, which are described in 
Supplementary Material (Appendix 3). Finally, 12 radiomics 
features were selected successfully through the LASSO 
analysis (Figure S1A,S1B & Table S1), and a radiomics 
score was calculated for each patient. The relationship of 
radiomics score with nodules classification was illustrated in 
a waterfall plot (Figure S1C-S1E).

CTCs detection test

CTC testing was performed when patients were admitted 

Patients with indeterminate pulmonary 
lesions at chest CT who underwent 

pathological examinations in Shanghai 
Pulmonary Hospital from January 2021 to 

April 2021 (n=3,374)

Model construction

1.	Multiple pulmonary lesions identified 
at chest CT (n=970)

2.	Radiological appearance manifesting 
as subsolid lesion (n=1,754)

3.	Received any treatment before CTCs 
test (n=31)

Excluded

Patients with solitary pure-solid lesion 
(n=619)

1.	With radiological size larger than  
30 mm (n=68)

2.	Without pathological report (n=32)

Excluded

Patients with solitary pure-solid nodules 
with definitely pathological results were 

included in the following analysis (n=519)

7:3

Training set (n=364) Internal validation set (n=155)

Patients with solitary pulmonary nodules 
who underwent pathological examination 

and CTCs test in the First Hospital of 
Lanzhou university from August 2019 to 

July 2021 (n=214)

External validation set

Excluded

1.	Manifesting as subsolid 
nodules (n=109)

2.	Receive any treatment 
before CTCs test (n=2)

3.	With radiological size larger 
than 30 mm (n=21)

Patients with solitary pure-solid nodules 
with definitely pathological results (n=82)

A B

Figure 1 Flowchart of patient selection. CT, computed tomography; CTC, circulating tumor cell.
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to hospital for preoperative examination (about 2–3 days 
before surgery). The standard protocols of CTCs detection 
testing were employed as previously published (17,25,26), 
and the same method for CTCs detection was applied in 
the First Hospital of Lanzhou University. The peripheral 
venous blood sample (3 mL) of all patients enrolled in this 
study was collected via an EDTA-containing anti-coagulant 
tube (Becton, Dickinson and Company, NJ, USA) before 
surgical operation. The blood sample were temporarily 
stored at 4 °C and processed within 4 hours. CTCs were 
enriched and detected using CytoploRare® Detection Kit 
(GenoSaber Biotech, Shanghai, China). the enrichment 
of CTC was initially achieved by lysis of erythrocytes and 
remove of leukocytes, and then the enriched cells were 
incubated with detection probes at room temperature for 
forty minutes. After repeated washing to elute redundant 
detection probes, the remnant samples were amplified and 
quantified by fluorescent quantitative polymerase chain 
reaction (PCR) using ABI 7300 Real-Time PCR System 
(ThermoFisher, MA, USA). The same detection kit was 
adopted for the external validation set, and the results of 
detection test were retrospectively collected from medical 
records; 8.7 folate unit (FU)/3 mL was considered the 
optimal cutoff threshold for differential diagnosis of lung 
cancer based on kit instruction.

Study design 

In this study, patients’ age, smoking history, prior extra-
thoracic cancer, location of the nodule, speculation, and the 
nodule size were used to calculate a Mayo risk score (27). 
The integrated model incorporated estimated radiomics 
score as a single variable, Mayo risk score, and the levels 
of CTCs to yield a probability of malignancy by logistic 
regression analysis. The predictive efficacy of this integrated 
model was constructed on a basis of the training set, and 
evaluated in internal and independent external validation 
sets. The proportions of benign and malignant nodules that 
reside at different probability deciles from the integrated 
model and other 3 models alone were first compared, since 
the proportion of malignant and benign nodules in a specific 
malignancy probability decile provides information that may 
be helpful in clinical decision-making (28). The improvement 
value of the integrated model was then investigated by 
comparison with clinical assessment procedures. We also 
tested the performance of this integrated model in patients 
with different nodule sizes and intermediate risks. The net 
reclassification index (NRI) was applied to quantify the 

additional benefit for nodules risk classifications derived 
from the novel model.

Statistical analysis

Categorical variables were compared using Pearson’s chi-
squared test or Fisher’s exact test, and continuous variables 
were analyzed using the independent t-test. The integrated 
model was developed by logistic regression analysis based 
on radiomics score, Mayo risk score, and the levels of 
CTCs and to calculate the malignant probability of each 
patient. Youden index (sensitivity + specificity − 1) was used 
to identify the optimal cut-off values in the Training set. 
During the internal and external validation of the model, 
the malignant probability for each patient in these two sets 
was calculated according to the established integrated model 
and performed logistic regression using the malignant 
probability as factor. The AUC was calculated from the 
regression analysis, and compared by the DeLong’s test. 
The specific performance metrics, including sensitivity, 
specificity, positive predictive value (PPV), negative 
predictive value (NPV), and accuracy at the threshold of 
0.5 or higher, of each approach were calculated. An NRI 
>0 indicated significant improvement in malignant risk 
prediction of IPSNs.

All analyses were implemented by SPSS software (version 
23.0; IBM Corp., Armonk, NY, USA), MedCalc software, 
(version 16.4; MedCalc, Ostend, Belgium), and R software 
(version 3.6.2, www.R-project.org) with the following R 
packages: mRMRe, glmnet, waterfalls, vioplot, pROC. A P 
value <0.05 was considered statistically significant. 

Results 

Baseline characteristics 

A total of 519 patients with IPSNs from the SPH cohort 
were yielded for analysis, consisting of 291 males (56.1%) 
and 228 females (43.9%), with a median age of 61 years 
[interquartile range (IQR), 53–67 years]. Among them, 364 
patients (70%) were randomly selected acting as a training 
set, including 81 benign nodules (22.3%) and 283 malignant 
nodules (77.7%); the remaining 155 patients (30%) were 
developed as an internal validation set, including 46 benign 
nodules (29.7%) and 109 malignant nodules (70.3%). The 
external test set included 52 males and 30 females, with a 
median age of 57 years (IQR, 52–63 years). Benign lesions 
were detected in 36 patients (43.9%) and malignant lesions 

http://www.R-project.org


Wan et al. Integrated model for nodules classification570

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2023;12(3):566-579 | https://dx.doi.org/10.21037/tlcr-23-145

were detected in 46 patients (56.1%). Of 215 patients 
undergoing PET-CT examination, 152 cases were in 
training set, and 63 in internal validation set.

In the training and internal validation set, the patients 
with malignant nodules seemed to be older {55 [50–64] vs. 
63 [55–69] years, P<0.001 for the training test; 54 [47–65] 
vs. 62 [55–67] years, P=0.002 for the validation set}, have 
larger nodules size [15.6 (10.9–18.3) vs. 19.5 (14.3–24.4) mm,  
P<0.001 for the training test; 15.8 (10.8–19.8) vs. 19.5 
(13.3–25.8) mm, P=0.002 for the internal validation set], 
and were more frequently diagnosed with a higher level of 
CTCs [9.0 (6.6–13.6) vs. 14.0 (9.9–18.9), P<0.001 for the 
training test; 10.7 (7.9–12.3) vs. 14.0 (9.7–16.8), P<0.001 for 
the internal validation set]. In the external validation set, 
the patients with malignant nodules were older, and were 
more frequently diagnosed with a higher level of CTCs. 
The clinical characteristics and radiological parameters are 
detailed in Table 1.

Development and validation of the integrated model

The distribution of malignant risk estimated by the models 
included in this study for each set are illustrated in Table 1. 
The integrated model correctly classified 32.5% of benign 
nodules and 97.4% of malignant nodules (Figure 2A) in the 
internal validation set, which was more specific than the 
CTCs test (15.2% vs. 99.1%), the radiomics model (17.4% 
vs. 96.4%), and the Mayo clinical model (93.4% vs. 19.3%, 
Figure S2A) at a probability threshold of 0.5. Similar 
trends were obtained for external validation set at the same 
threshold (Figure 2B and Figure S2B).

The integrated model achieved an AUC of 0.83 (0.78–
0.88), 0.83 (0.75–0.91), and 0.76 (0.66–0.87) in the training, 
internal validation, and external validation sets, respectively 
(Figure 3A-3C). It outperformed the CTCs test [0.70 
(0.62–0.79), P=0.001 and 0.68 (0.56–0.80), P=0.129 for the 
internal and external validation set], Mayo clinical model 
[0.68 (0.59–0.77), P<0.001; 0.55 (0.42–0.68), P=0.007], 
and radiomics model [0.72 (0.63–0.81), P=0.002; 0.67 
(0.55–0.79), P=0.050], with a higher AUC (Figure 3A-3C). 
Comparison to PET-CT was restricted to 215 cases who 
had undergone PET-CT, and comparable performance with 
PET-CT examination was obtained by the integrated model 
(P=0.379, P=0.308 for training and internal validation set, 
respectively; Figure 3D,3E). The sensitivity, specificity, 
PPV, NPV, and accuracy achieved by the integrated model 
was 0.92 (0.88–0.95), 0.47 (0.36–0.59), 0.86 (0.82–0.90), 
0.62 (0.49–0.74), and 0.82 (0.78–0.86) in the training 

set (Figure 3F), 0.97 (0.92–0.99), 0.33 (0.20–0.48), 0.77 
(0.69–0.84), 0.83 (0.59–0.96), and 0.78 (0.71–0.84) in the 
internal validation set (Figure 3G), and 0.74 (0.59–0.86), 
0.67 (0.49–0.81), 0.74 (0.59–0.86), 0.67 (0.49–0.81), and 
0.71 (0.60–0.80) in the external test set at the threshold of 
0.5 (Figure 3H), with detailed performance metrics for each 
model listed in Table S2. NRI analysis demonstrated that 
the integrated model provided net benefit for differentiation 
of IPSNs (Table S3).

Performance of the integrated model for nodules with 
different radiological size

For IPSNs with size ≥5 and <20 mm, the integrated model 
showed a significant improvement in AUC of 0.09 (0.01–
0.17; P=0.044, Figure 4A), 0.23 (0.03–0.42; P=0.026, Figure 
4B) over CTCs testing, as well as the radiomics and Mayo 
clinical models, with a highest accuracy of 0.73 (0.63–0.82) 
and 0.62 (0.45–0.77) for internal and external validation 
set (Table 2). For IPSNs with a size ≥10 and <20 mm  
(Figure 4C,4D) and ≥20 and <30 mm (Figure 4E,4F), the 
performance of the integrated model was also superior to 
the other 3 models, with performance metrics detailed in 
Table S2. Net improvement for the diagnostic accuracy of 
IPSNs was found to be achieved by the integrated model 
across different subsets of nodules size in regard to NRI 
analysis (Table S3).

Performance of the integrated model for intermediate-risk 
nodules

Using the thresholds of 5% and 65%, the Mayo clinical 
model classified 115 cases (74.2%) from the internal 
validation set and 64 cases (78.0%) from the external 
validation set as intermediate risk nodules. Of 115 cases, 
70.4% (81/115) were correctly classified as malignant 
nodules by the integrated model with an AUC of 0.80 
(0.71–0.87; Figure 5A), a sensitivity of 0.98 (0.92–1.00) 
and an accuracy of 0.78 (0.70–0.85), showing superior 
performance to CTCs testing [AUC: 0.67 (0.58–0.76), 
P=0.010] and the radiomics model [AUC: 0.67 (0.58–0.76), 
P=0.008]. Similarly, in the external validation set, 56.3% 
(36/64) were correctly classified as malignant nodules with 
an AUC of 0.77 (0.64–0.86; Figure 5B), a sensitivity of 0.72 
(0.55–0.86), and an accuracy of 0.69 (0.56–0.80), which 
maintained better performance than CTCs testing [AUC: 
0.66 (0.53–0.77), P=0.098] and the radiomics model [AUC: 
0.67 (0.54–0.78), P=0.069], even though no significantly 

https://cdn.amegroups.cn/static/public/TLCR-23-145-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-145-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-145-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-145-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-145-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-145-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-145-Supplementary.pdf


Translational Lung Cancer Research, Vol 12, No 3 March 2023 571

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2023;12(3):566-579 | https://dx.doi.org/10.21037/tlcr-23-145

statistical difference. The performance metrics was 
detailed in Table 2. The benefit of the integrated model in 
reclassifying nodules compared with the other 3 models is 
illustrated in Figure 5C-5H. NRI analysis demonstrated that 
the integrated model provided net benefit for classifying 
benign nodules form malignant nodules in intermediate risk 
subgroup (Table S3).

Discussion

In this study, the derivation and validation of a radio-

biological integrated model constructed by combining 
radiomics features, Mayo risk score, and blood-based CTCs 
were reported for classifying and risk stratifying IPSNs 
in 601 patients from 2 Chinese hospitals. The integrated 
model showed a promising reclassification performance 
that was significantly better than CTCs testing prediction 
alone, and superior to that of the existing risk model (net 
reclassification of at least 17% on the external validation 
set compared with the Mayo clinical model). Further, the 
integrated model achieved performance not inferior to 
PET-CT for those who had undergone PET-CT. Robust 

Table 1 Demographic characteristics

Characteristics

SPH cohort (n=519)
External validation set (n=82)

Training set (n=364) Internal validation set (n=155)

Benign (n=80) Malignant (n=284) P value Benign (n=46) Malignant (n=109) P value Benign (n=36) Malignant (n=46) P value

Age at CT scans 55 [50–64] 63 [55–69] <0.001 54 [47–65] 62 [55–67] 0.002 53 [49–58] 60 [53–66] 0.003

Gender (male) 45 (55.6) 165 (58.3) 0.659 22 (47.8) 59 (54.1) 0.473 23 (63.9) 29 (63.0) 0.937

Current/former 

smoker 

6 (7.4) 25 (8.8) 0.685 1 (2.2) 7 (6.4) 0.275 18 (50.0) 23 (50.0) 1.000

History of malignant 

cancer

2 (2.5) 16 (5.7) 0.244 4 (8.7) 5 (4.6) 0.318 0 0 NA

Radiological size <0.001 0.007 0.957

5≤ size ≤20 mm 63 (78.8) 147 (51.8) 36 (78.3) 56 (51.4) 17 (47.2) 22 (47.8)

20< size ≤30 mm 17 (21.3) 137 (48.2) 10 (21.7) 52 (47.7) 19 (52.8) 24 (52.2)

Median [IQR], mm 15.6 [10.9–18.3] 19.5 [14.3–24.4] <0.001 15.8 [10.8–19.8] 19.5 [13.3–25.8] 0.002 19.3 [13.1–25.1] 20.7 [15.2–24.0] 0.991

Located in upper lobe 39 (48.1) 143 (50.5) 0.705 18 (39.1) 57 (52.3) 0.134 20 (55.6) 21 (45.7) 0.373

CTCs (FU/3 mL) 9.0 [6.6–13.6] 14.0 [9.9–18.9] <0.001 10.7 [7.9–12.3] 14.0 [9.7–16.8] <0.001 9.1 [6.9–12.6] 10.5 [8.3–14.2] 0.013

PET-CT examination 26 (32.5) 126 (44.4) 0.057 15 (32.6) 48 (44.0) 0.186 – – –

Histology <0.001 <0.001 <0.001

Adenocarcinoma – 195 (68.9) – 74 (67.9) – 39 (84.8)

Squamous cell 

carcinoma

– 38 (13.4) – 17 (15.6) – 4 (8.7)

Others malignant 

tumors

– 50 (17.7) – 18 (16.5) – 3 (6.5)

Lung cancer probability, %

Integrated risk 

model

53.0 [33.8–74.0] 81.8 [73.4–95.3] <0.001 59.4 [43.0–75.1] 83.5 [78.1–93.0] <0.001 45.3 [29.5–56.8] 64.6 [47.3–77.7] <0.001

CTCs test prediction 64.8 [52.3–80.2] 79.1 [67.0–91.6] <0.001 67.2 [58.2–76.1] 78.5 [66.1–88.0] <0.001 51.1 [41.3–60.4] 60.0 [49.4–68.7] 0.006

Mayo clinical model 15.9 [5.0–19.1] 28.9 [10.5–42.0] <0.001 16.0 [4.4–22.6] 28.9 [9.1–42.4] 0.001 39.2 [15.2–63.0] 43.1 [25.7–58.6] 0.467

Radiomics model 61.7 [44.1–79.5] 79.2 [74.2–88.2] <0.001 68.0 [54.7–83.6] 80.3 [75.8–88.7] <0.001 50.7 [37.5–64.6] 60.3 [55.7–68.3] 0.005

Values are numbers of patients with percentages in parentheses for categorical variables, and median with interquartile range [IQR] for continuous variable. P 

represents the statistical difference between training and test sets. SPH, Shanghai Pulmonary Hospital; CT, computed tomography; IQR, interquartile range; 

CTCs, circulating tumor cells; FU, functional unit; PET, positron emission tomography; NA, not applicable. 

https://cdn.amegroups.cn/static/public/TLCR-23-145-Supplementary.pdf
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Figure 2 Proportion of malignant and benign nodules at different probability decile for integrated model in internal validation set (A) and 
external validation set (B).

Figure 3 Diagnostic performance of the integrated model. ROC curves for integrated model, and other three models alone in training 
(A), internal validation (B), and external validation set (C); and the comparison of integrated model with PET-CT for participants with the 
examination performed from training set (D) and internal validation set (E). Illustration for performance metrics of models in training (F), 
internal validation (G), and external validation set (H). CTC, circulating tumor cell; AUC, area under the ROC curve; PET-CT, positron 
emission tomography/computed tomography; PPV, positive predictive value; NPV, negative predictive value; ROC, receiver operating 
characteristic. 
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Figure 4 Comparison of diagnostic performance for integrated model with other three models in subgroup of IPSNs with nodules size ≥5 and 
<20 mm (A,B), nodules size ≥10 and <20 mm (C,D), and ≥20 and <30 mm (E,F) for internal and external validation set, respectively. CTCs, 
circulating tumor cells; AUC, area under the ROC curve; IPSN, indeterminate pulmonary solid nodule; ROC, receiver operating characteristic.

performance with high sensitivity were also found across 
different solid sizes and malignant risk probabilities. To 
our best knowledge, this is the first study to integrate the 
level of CTCs, radiomics features, and clinical variables 
into a single risk model for malignant risk stratification of 
IPSNs in a large Chinese population, and to validate it in an 
independent external set.

Lung cancer remains the leading cause of cancer-related 
death worldwide. Early diagnosis can markedly improve the 
prognostic outcomes, and currently, 2 principal routes are 
widely used for the early lung cancer diagnosis. The first 
route is screening using low-dose computed tomography 
(LDCT), which was shown to reduce lung cancer-related 
deaths by 26% in the European NELSON trial (29). 
However, substantial pitfalls of LDCT have been discovered 
in clinical practice, despite the excellent sensitivity in 
detecting lung nodules. A major bottleneck is that LDCT 
generated exceptionally high false-positive results followed 

by biopsies to confirm the diagnostic findings, thereby 
leading to invasive biopsy-related complications, patient 
anxiety, and economic burden, preventing it from being 
an efficient tool for lung cancer screening (8). Another 
example is that the radiation risk related with annual LDCT 
screening is yet to be sufficiently resolved (30). The second 
route is the detection of a tumor as an incidental discovery 
in patients receiving chest CT examination for an unrelated 
reason. Multiple clinical risk models, such as the widely 
used Mayo clinical model (31), and Brock model (32), have 
been recommended to assist clinicians in the assessment of 
patients with incidentally diagnosed IPNs in management 
guidelines (33,34). However, the predictive value of these 
logistical regression-based methods is limited at least 
partly due to their reliance on qualitative, and hence 
inconsistent, human interpretation of radiological variable 
such as nodules size and morphology. Moreover, there was 
no specific recommended strategy provided for nodules 
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Table 2 Performance metric of integrated risk models in subset with different nodules size and intermediate risk

Performance Integrated model Mayo clinical model Radiomics CTCs test

Nodules of size ≥5 and <20 mm

Internal validation set (n=92) (95% CI)

Sensitivity 0.95 (0.85–0.99) 0.02 (0.00–0.10) 0.91 (0.80–0.97) 0.98 (0.91–1.00)

Specificity 0.39 (0.23–0.57) 1.00 (0.90–1.00) 0.33 (0.19–0.51) 0.11 (0.03–0.26)

PPV 0.71 (0.60–0.81) 1.00 (0.03–1.00) 0.68 (0.56–0.78) 0.64 (0.53–0.74)

NPV 0.82 (0.57–0.96) 0.40 (0.29–0.50) 0.71 (0.44–0.90) 0.80 (0.28–0.99)

Accuracy 0.73 (0.63–0.82) 0.40 (0.30–0.51) 0.68 (0.58–0.78) 0.65 (0.54–0.74)

External validation set (n=39) (95% CI)

Sensitivity 0.55 (0.32–0.76) 0.05 (0.00–0.23) 0.68 (0.45–0.86) 0.73 (0.50–0.89)

Specificity 0.71 (0.44–0.90) 0.94 (0.71–1.00) 0.65 (0.38–0.86) 0.35 (0.14–0.62)

PPV 0.71 (0.44–0.90) 0.50 (0.01–0.99) 0.71 (0.48–0.89) 0.59 (0.39–0.78)

NPV 0.55 (0.32–0.76) 0.43 (0.27–0.61) 0.61 (0.36–0.83) 0.50 (0.21–0.79)

Accuracy 0.62 (0.45–0.77) 0.56 (0.40–0.72) 0.67 (0.50–0.81) 0.56 (0.40–0.72)

Intermediate risk nodules identified by Mayo clinical model (5%≤ risk probability <65%)

Internal validation set (n=115) (95% CI)

Sensitivity 0.98 (0.92–1.00) 0.13 (0.07–0.22) 0.98 (0.92–1.00) 0.99 (0.93–1.00)

Specificity 0.28 (0.14–0.47) 0.94 (0.79–0.99) 0.12 (0.04–0.29) 0.19 (0.07–0.36)

PPV 0.78 (0.69–0.85) 0.85 (0.55–0.98) 0.74 (0.65–0.82) 0.76 (0.67–0.84)

NPV 0.82 (0.48–0.98) 0.29 (0.21–0.39) 0.67 (0.22–0.96) 0.86 (0.42–1.00)

Accuracy 0.78 (0.70–0.85) 0.36 (0.27–0.45) 0.74 (0.65–0.82) 0.77 (0.66–0.84)

External validation set (n=64) (95% CI)

Sensitivity 0.72 (0.55–0.86) 0.25 (0.12–0.42) 0.83 (0.67–0.94) 0.75 (0.58–0.88)

Specificity 0.64 (0.44–0.81) 0.75 (0.55–0.89) 0.39 (0.22–0.59) 0.50 (0.31–0.69)

PPV 0.72 (0.55–0.86) 0.56 (0.30–0.80) 0.64 (0.49–0.77) 0.66 (0.49–0.80)

NPV 0.64 (0.44–0.81) 0.44 (0.29–0.59) 0.65 (0.38–0.86) 0.61 (0.39–0.80)

Accuracy 0.69 (0.56–0.80) 0.47 (0.34–0.60) 0.64 (0.51–0.76) 0.64 (0.51–0.76)

CTCs, circulating tumor cells; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.

with intermediate risk, which produce the highest rate of 
diagnostic errors and invasive procedures. Hence, a more 
efficient, and non-invasive or minimally invasive approach 
is critical to complement the existing routes for assessing 
cancer probability of IPNs, especially for those with 
intermediate risk.

A recently proposed method for the classifications of 
IPNs is liquid biopsy-based biomarker, and it has been 
considered an easier, safer, more-effective, and non-invasive 
tool for cancer diagnosis and treatment (10). CTCs, a liquid 

biopsy-based biomarker, have been increasingly studied 
as promising diagnostic or screening indicators for many 
types of malignant cancers, and have allowed researchers 
to reevaluate the inclusion of CTCs in the screening and 
diagnostic workflows due to the advancements in detection 
technology (35). Zhang et al. revealed that the detection 
of CTCs in peripheral blood was a reliable method to 
differentiate malignancy of indeterminate solitary lung 
nodules (13). Our previous study indicated that CTCs 
showed good performance in distinguishing benign from 
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Figure 5 Comparison of diagnostic performance for integrated model with the other three models in the subgroup of IPSNs with 
intermediate risk. (A) Internal validation set; (B) external validation set. Reclassification diagrams for IPSNs with intermediate risk by 
integrated model in the comparison with Mayo clinical model (C), CTCs test prediction (D) and Radiomics model (E) in the internal 
validation set. Reclassification diagrams for IPSNs with intermediate risk by integrated model in the comparison with Mayo clinical model (F), 
CTCs test prediction (G) and Radiomics model (H) in external validation set. The nodules with intermediate risk were identified by Mayo 
clinical model using the thresholds of 5% and 65% risk probability. CTC, circulating tumor cell; AUC, area under the ROC curve; IPSN, 
indeterminate pulmonary solid nodules; ROC, receiver operating characteristic.
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malignant of indeterminate solitary pulmonary nodules 
with AUC achieved 0.792 in validation set (17). Different 
from the previous study, our study distinguished between 
benign and malignant pulmonary nodules especially for 
solid nodules and combined with radiomics features and 
clinical variables. Consistent with previous studies, the 
CTCs test was found to achieve a better performance than 
the traditional Mayo clinical model with a higher AUC, 
sensitivity, and accuracy in the current study, indicating the 
significant value of CTCs in risk stratification for IPSNs. 
Nevertheless, using CTCs as a liquid biopsy biomarker 
for early detection of lung cancer was not found to be 
sufficient for researchers accounting for its limited AUC, 
low sensitivity, but high specificity (36). Kammer et al. (27) 
integrated CYFRA21-1, clinical variables, and radiomics 
features of IPNs as a single risk, and reported that the 
combined model provided improved diagnostic accuracy 
over the Mayo clinical model, and strategy guided by this 
model reduced invasive procedures of at least 10% in the 
intermediate risk nodules, showing the importance and 
clinical utility of incorporating image and clinical signatures 
on the basis of blood-based biomarkers. Hence, to enhance 
the diagnostic performance of CTCs test, we hypothesized 
that incorporating quantitative image features and clinical 
variables with the results of CTCs testing could provide 
a novel insight into classifications of lung nodules, and 
improve the noninvasive diagnostic accuracy, compensating 
for low sensitivity of CTCs to form an effective platform for 
the early detection of lung cancer in high-risk populations 
and enabling physicians to design a tailored treatment 
approach. 

To verify our hypothesis, the integrated model was 
derived by the aforementioned markers, and validated on a 
group of pathologically-confirmed IPSNs mostly at early-
stage lung cancer (72.9%) from the department of thoracic 
surgery in this retrospective evaluation design study. The 
model achieved a higher AUC (0.83), sensitivity (0.95), 
and NPV (0.82) than CTCs testing alone in the internal 
validation set, and similar performance was obtained for 
the external validation set, indicating the potential value of 
integration of biological markers and quantitative image 
features for classifying IPSNs. Diagnosis of IPSNs with size 
ranging from 5 to 20 mm, or intermediate risk probability 
is still challenging for clinicians due to the lack of well-
specified optimal action strategies. The integrated model 
showed a robust performance for IPSNs with different 
nodule sizes. Moreover, the integrated model achieved an 
AUC of 0.77 and NRI of 0.12 at the threshold of 0.5 or 

higher, and was shown to correctly classify more than half 
of the intermediate risk nodules into the malignant group in 
the external validation set, showing the great clinical benefit 
for IPSNs’ diagnosis.

PET-CT has been known to be a more accurate and 
effective tool than CT alone for distinguishing solitary 
lung nodules, resulting in fewer equivocal findings (37). To 
further evaluate the predictive efficacy of the integrated 
model, the comparison with PET-CT on the participants 
with established PET-CT records in the SPH cohort was 
performed. As a result, the AUC of the integrated model 
was found to be higher than that of PET-CT in the internal 
validation set with no significant statistical difference 
(P=0.308), demonstrating their comparable performances. 

In the clinical application of the model, we should 
recognize that the models show the best performance in 
populations similar to those in which they were developed 
that the reason why the model shows good performance 
in its internal validation set but less than satisfactory 
performance in the external validation set. The ratio of 
benign and malignant nodules was inconsistent between 
the training set and the external verification set (1:3.6 in the 
training set and 1:1.3 in the external verification set). We 
calculate the proportion of malignant and benign nodules 
that reside at different probability from our integrated 
model in the external set (Figure 2A). The integrated model 
classified 73.9% of malignant nodules at a probability 
threshold of 0.5 or higher. Besides, this model classified 
66.6% of benign nodules at a probability threshold of 0.5 
or lower. The results indicate that this integrated model 
exhibits satisfactory discriminative performance even when 
the ratio of benign to malignant nodules is inconsistent. 
However, to be cautious, it is better to apply this model 
to the populations who were similar to those who were 
developed.

The work presented here has limitations. Firstly, this 
was a retrospective study, making selection bias inevitable. 
Secondly, specific approaches were not applied to handle 
the parameter variations derived from different scanners at 
multiple institutions, which might have led to some inherent 
bias. Extraction of radiomics features relied on manual 
segmentation, which was precise but time-consuming 
and labor-intensive. A user-friendly, fully automated 
segmentation for future application is of great necessity. 
Thirdly, our external validation included 82 IPSNs 
consisting of 36 benign and 46 malignant diseases, which 
may fail to reflect typical nodules sets as encountered in all 
clinical practice settings and was certainly not reflective of 
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the disease prevalence encountered in a screening cohort. 
The feasibility and practicality of this integrated radio-
biological model need to be validated in a large prospective 
cohort in the future.

Conclusions 

In conclusion, we developed an integrated model by 
incorporating CTCs, clinical variables, and radiomics 
features for diagnosis IPSNs. It was shown to have robust 
and superior performance as compared with existing clinical 
assessment models, and no inferiority to the current PET-
CT examination for IPSNs diagnosis, which may help to 
facilitate the accurate diagnosis of early-stage lung cancer 
and guide clinical decision-making.
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Supplementary

Appendix 1

Informed consent process

This study was a retrospective study and the medical records or biological specimens used were obtained from previous 
clinical treatment. Exemption from informed consent will not adversely affect the rights or health of the subjects.

Appendix 2

Chest CT Scanning and Image Acquisition

Chest high resolution CT scans were obtained during patients’ full inspiration using the Somatom Definition AS (Siemens 
Medical System, Germany) or brilliance 40 (Philips Medical Systems, Netherlands) at 120 KVp tube energy and 200 mAs 
effective dose. All CT images were reconstructed using a medium sharp reconstruction algorithm with a slice thickness of  
1 mm with 0.7 mm increment, and the size of CT images is 512×512 pixels. The identified CT scans were downloaded from 
the Picture Archiving and Communication Systems. The nodules types were independently assessed by three researchers (S.S., 
X.M., H.H.). The disagreement was resolved by the group discussion with a senior radiologist (Y.S.).

Appendix 3

Radiomics feature Selection and Radiomics Score Calculation

Totally, 1,317 radiomics features were extracted consisting of 7 classes: (a) first order statistics (n=252); (b) shape (n=14); 
(c) Gray level co-occurrence matrix (n=336); (d) Gray level dependence matrix (n=197); (e) Gray level run length matrix 
(n=224); (f) Gray level size zone matrix (n=224); (g) Neighboring gray tone difference matrix (n=70). To ensure stability 
and reproducibility of the radiomics features, the mRMR method was first applied to rank each feature depending on its 
relevance with the malignant status of nodules in the training set, and redundancy with other radiomics features. The top 100 
most significant features were selected as candidate for LASSO analysis. By introducing a tuning parameter to penalize the 
coefficient of variables that entered into the regression model, LASSO aimed to reduce the possibility of overfitting. With the 
increase in the tuning parameter (λ), the absolute values of variable coefficients were reduced toward zero, and less variables 
were then selected. The area under the curve (AUC) was used as the criteria of model performance, and the model with 
the maximum AUC was selected. The computing algorithms could be found at www.radiomics.io and the image biomarker 
standardization initiative (IBSI) presented a document to standardize the nomenclature and definitions of radiomics features. 
The radiomics score was calculated based on the following formula: 

1
Radiomics score

N

i i
i

coef X
=

=∑

Where N represent the number of the selected feature, coefi is the value of non-zero coefficient of the ith selected feature, 
Xi is the value of the ith selected feature.
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Table S1 The detailed list of selected radiomics feature in the LASSO regression analysis

Imaging filtering Feature class Radiomics feature Coefficient

Square root First order Total energy 3.97E–11

Logarithm GLCM Correlation 0.2003277

Wavelet. HLH GLCM Imc1 1.846807

Wavelet. LHL GLCM MCC −0.557705

Wavelet. HLH GLCM MCC −0.7074729

Wavelet. LHL GLCM Imc2 −0.1703806

Gradient GLDM Small dependence high gray level emphasis −0.006238725

Original GLDM Dependence entropy 0.03476835

Wavelet. HHH GLSZM Gray level nonuniformity 0.0006610718

Wavelet. LHL NGTDM Strength −0.01518317

Square NGTDM Strength −0.2240264

Gradient NGTDM Contrast −0.6954117

LASSO, least absolute shrinkage and selection operator; GLCM, gray level cooccurrence matrix; GLDM, gray level dependence matrix; 
GLSZM, gray level size zone matrix; NGTDM, Neighboring gray tone difference matrix.

Figure S1 Radiomics features selection using the LASSO logistic regression model. (A) LASSO coefficient profiles of the 100 candidate 
radiomics features. Optimal λ was identified used 10-fold cross validation and the minimum criterion, and a λ value of 0.053 was identified 
with 12 selected radiomics features; (B) AUC from the LASSO regression cross-validation procedure was plotted against log(λ); (C,D) The 
waterfall plot of the training set (C), internal validation set (D), and external validation set (E) to visualize the distribution of the radiomics 
score and the benign and malignant state of the IPSNs. LASSO, least absolute shrinkage and selection operator; AUC, area under the curve; 
IPSNs, indeterminate lung solid nodules.
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Figure S2 Proportion of malignant and benign nodules at different probability decile by CTCs test prediction (a), Mayo clinical model (b) 
and radiomics model (c) in the internal validation set (A), in the external validation set (B). CTCs, circulating tumor cells. 
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Table S2 Performance metric of integrated risk models in training set and subset with different nodules size

Performance Integrated model Mayo clinical model Radiomics CTCs test

Nodules with size ranging from 5–10 mm

Training set (n=364)

Sensitivity (95% CI) 0.92 (0.88–0.95) 0.31 (0.26–0.37) 0.99 (0.96–1.00) 0.99 (0.96–1.00)

Specificity (95% CI) 0.47 (0.36–0.59) 0.86 (0.77–0.93) 0.17 (0.10–0.27) 0.16 (0.09–0.26)

PPV (95% CI) 0.86 (0.82–0.90) 0.89 (0.81–0.94) 0.81 (0.76–0.85) 0.81 (0.76–0.85)

NPV (95% CI) 0.62 (0.49–0.74) 0.27 (0.21–0.32) 0.78 (0.52–0.94) 0.76 (0.50–0.93)

Accuracy (95% CI) 0.82 (0.78–0.86) 0.44 (0.39–0.49) 0.80 (0.76–0.84) 0.80 (0.76–0.84)

Internal validation set (n=155)

Sensitivity (95% CI) 0.97 (0.92–0.99) 0.85 (0.77–0.91) 0.94 (0.88–0.98) 0.99 (0.95–1.00)

Specificity (95% CI) 0.33 (0.20–0.48) 0.28 (0.16–0.44) 0.26 (0.15–0.41) 0.15 (0.06–0.29)

PPV (95% CI) 0.77 (0.69–0.84) 0.74 (0.65–0.81) 0.75 (0.67–0.82) 0.73 (0.66–0.80)

NPV (95% CI) 0.83 (0.59–0.96) 0.45 (0.27–0.64) 0.67 (0.41–0.86) 0.88 (0.47–1.00)

Accuracy (95% CI) 0.78 (0.71–0.84) 0.70 (0.62–0.77) 0.70 (0.62–0.77) 0.74 (0.67–0.81)

External validation set (n=82)

Sensitivity (95% CI) 0.74 (0.59–0.86) 0.39 (0.25–0.55) 0.85 (0.71–0.94) 0.74 (0.59–0.86)

Specificity (95% CI) 0.67 (0.49–0.81) 0.64 (0.46–0.79) 0.36 (0.21–0.54) 0.56 (0.38–0.72)

PPV (95% CI) 0.74 (0.59–0.86) 0.58 (0.39–0.75) 0.63 (0.50–0.75) 0.68 (0.53–0.80)

NPV (95% CI) 0.67 (0.49–0.81) 0.45 (0.31–0.60) 0.65 (0.41–0.85) 0.62 (0.44–0.79)

Accuracy (95% CI) 0.71 (0.60–0.80) 0.50 (0.39–0.61) 0.63 (0.52–0.74) 0.66 (0.55–0.76)

Nodules with size ranging from 10–20 mm

Internal validation set (n=81)

Sensitivity (95% CI) 0.96 (0.87–1.00) 0.02 (0.00–0.10) 0.96 (0.87–1.00) 0.98 (0.90–1.00)

Specificity (95% CI) 0.34 (0.18–0.54) 1.00 (0.88–1.00) 0.17 (0.06–0.36) 0.07 (0.01–0.23)

PPV (95% CI) 0.72 (0.60–0.83) 1.00 (0.02–1.00) 0.68 (0.56–0.78) 0.65 (0.54–0.76)

NPV (95% CI) 0.83 (0.52–0.98) 0.36 (0.26–0.48) 0.71 (0.29–0.96) 0.67 (0.09–0.99)

Accuracy (95% CI) 0.74 (0.63–0.83) 0.37 (0.27–0.48) 0.68 (0.57–0.78) 0.65 (0.54–0.76)

External validation set (n=34)

Sensitivity (95% CI) 0.60 (0.36–0.81) 0.05 (0.00–0.25) 0.70 (0.46–0.88) 0.75 (0.51–0.91)

Specificity (95% CI) 0.64 (0.35–0.87) 0.93 (0.66–1.00) 0.57 (0.29–0.82) 0.36 (0.13–0.65)

PPV (95% CI) 0.71 (0.44–0.90) 0.50 (0.01–0.99) 0.70 (0.46–0.88) 0.62 (0.41–0.81)

NPV (95% CI) 0.53 (0.28–0.77) 0.41 (0.24–0.59) 0.57 (0.29–0.82) 0.50 (0.19–0.81)

Accuracy (95% CI) 0.62 (0.44–0.78) 0.41 (0.25–0.59) 0.65 (0.46–0.80) 0.59 (0.41–0.75)

Table S2 (continued)
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Table S2 (continued)

Performance Integrated model Mayo clinical model Radiomics CTCs test

Nodules with size ranging from 20–30 mm

Internal validation set (n=62)

Sensitivity (95% CI) 1.00 (0.93–1.00) 0.38 (0.25–0.53) 0.98 (0.90–1.00) 1.00 (0.93–1.00)

Specificity (95% CI) 0.10 (0.00–0.45) 0.70 (0.35–0.93) 0.00 (0.00–0.31) 0.30 (0.07–0.65)

PPV (95% CI) 0.85 (0.74–0.93) 0.87 (0.66–0.97) 0.84 (0.72–0.92) 0.88 (0.77–0.95)

NPV (95% CI) 1.00 (0.02–1.00) 0.18 (0.08–0.34) 0.00 (0.00–0.97) 1.00 (0.29–1.00)

Accuracy (95% CI) 0.85 (0.74–0.93) 0.44 (0.31–0.57) 0.82 (0.70–0.91) 0.89 (0.78–0.95)

External validation set (n=40)

Sensitivity (95% CI) 0.91 (0.71–0.99) 0.68 (0.45–0.86) 1.00 (0.85–1.00) 0.73 (0.50–0.89)

Specificity (95% CI) 0.61 (0.36–0.83) 0.39 (0.17–0.64) 0.11 (0.01–0.35) 0.72 (0.47–0.90)

PPV (95% CI) 0.74 (0.54–0.89) 0.58 (0.37–0.77) 0.58 (0.41–0.74) 0.76 (0.53–0.92)

NPV (95% CI) 0.85 (0.55–0.98) 0.50 (0.23–0.77) 1.00 (0.16–1.00) 0.68 (0.43–0.87)

Accuracy (95% CI) 0.78 (0.62–0.89) 0.55 (0.38–0.71) 0.60 (0.43–0.75) 0.72 (0.56–0.85)

PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval.

Table S3 Net reclassification index (NRI) analysis provided by the integrated model in comparison with other three models for different sets

Model Estimate Stand Error Lower Upper

Internal validation set

vs. CTCs 0.156 0.086 −0.013 0.324

vs. radiomics 0.161 0.072 0.018 0.303

vs. Mayo clinical model 0.171 0.088 0.003 0.349

External validation set

vs. CTCs 0.111 0.122 −0.125 0.348

vs. radiomics 0.197 0.108 −0.009 0.411

vs. Mayo clinical model 0.376 0.144 0.095 0.658

Nodules with different size

Internal validation set

5–10 mm

vs. CTCs 0.243 0.096 0.051 0.429

vs. radiomics 0.167 0.091 −0.013 0.350

vs. Mayo clinical model 0.319 0.090 0.141 0.496

10–20 mm

vs. CTCs 0.257 0.110 0.040 0.469

vs. radiomics 0.172 0.096 −0.009 0.365

vs. Mayo clinical model 0.287 0.095 0.106 0.480

Table S3 (continued)
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Table S3 (continued)

Model Estimate Stand Error Lower Upper

20–30 mm

vs. CTCs −0.200 0.133 −0.500 0.000

vs. radiomics 0.119 0.102 0.000 0.352

vs. Mayo clinical model 0.015 0.231 −0.397 0.512

External validation set

5-10 mm

vs. CTCs 0.171 0.190 −0.201 0.540

vs. radiomics −0.078 0.155 −0.377 0.231

vs. Mayo clinical model 0.265 0.186 −0.111 0.628

10–20 mm

vs. CTCs 0.136 0.207 −0.270 0.538

vs. radiomics −0.029 0.175 −0.361 0.314

vs. Mayo clinical model 0.264 0.211 −0.152 0.673

20–30 mm

vs. CTCs 0.071 0.138 −0.200 0.341

vs. radiomics 0.409 0.135 0.141 0.667

vs. Mayo clinical model 0.449 0.214 0.027 0.864

Nodules with risk probability ranging from 5% to 65% identified by Mayo clinical model

Internal validation set

vs. CTCs 0.082 0.105 −0.124 0.288

vs. radiomics 0.156 0.084 0.000 0.324

vs. Mayo clinical model 0.187 0.106 −0.010 0.409

External validation set

vs. CTCs 0.115 0.140 −0.158 0.389

vs. radiomics 0.139 0.123 −0.103 0.382

vs. Mayo clinical model 0.365 0.164 0.045 0.690

CTCs, circulating tumor cells.
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