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Background: Cuproptosis is a novel mitochondrial respiration-dependent cell death mechanism induced 
by copper that can kill cancer cells via copper carriers in cancer therapy. However, the clinical significance 
and prognostic value of cuproptosis in lung adenocarcinoma (LUAD) remains unclear.
Methods: We performed a comprehensive bioinformatics analysis of the cuproptosis gene set, including 
copy number aberration, single-nucleotide variation, clinical characteristics, survival analysis, etc. 
Cuproptosis-related gene set enrichment scores (cuproptosis Z-scores) were calculated in The Cancer 
Genome Atlas (TCGA)-LUAD cohort using single-sample gene set enrichment analysis (ssGSEA). Modules 
significantly associated with cuproptosis Z-scores were screened by weighted gene co-expression network 
analysis (WGCNA). The hub genes of the module were then further screened by survival analysis and least 
absolute shrinkage and selection operator (LASSO) analysis, in which TCGA-LUAD (497 samples) and 
GSE72094 (442 samples) were used as the training and validation cohorts, respectively. Finally, we analyzed 
the tumor characteristics, immune cell infiltration levels, and potential therapeutic agents.
Results: Missense mutation and copy number variant (CNV) events were general in the cuproptosis 
gene set. We identified 32 modules, of which the MEpurple (107 genes) and MEpink (131 genes) modules 
significantly positively and negatively correlated with cuproptosis Z-scores, respectively. We identified 35 hub 
genes significantly related to overall survival and constructed a prognostic model consisting of 7 cuproptosis-
related genes in patients with LUAD. Compared with the low-risk group, patients in the high-risk group 
had a worse overall survival and gene mutation frequency, as well as significantly higher tumor purity. In 
addition, infiltration of immune cells was also significantly different between the 2 groups. Furthermore, the 
correlation between the risk scores and half-maximum inhibitory concentration (IC50) of antitumor drugs 
in the Genomics of Drug Sensitivity in Cancer (GDSC) v. 2 database was explored, revealing differences in 
drug sensitivity across the 2 risk groups.
Conclusions: Our study provided a valid prognostic risk model for LUAD and improved understanding of 
its heterogeneity, which may aid in the development of personalized treatment strategies.
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Introduction

Non-small cell lung cancer (NSCLC) is one of the most 
common malignant tumors and can be divided into 
adenocarcinoma, squamous carcinoma, and large cell 
carcinoma (1). Lung adenocarcinoma (LUAD) is the most 
common lung cancer subtype and accounts for approximately 
40% of lung cancer (2). According to statistics, LUAD 
has been the major cause of tumor-associated mortality in 
recent years (3). Previous studies have shown that patients 
with LUAD have a shorter survival time than do those with 
lung squamous cell carcinoma (LUSC) (4), as most cases 
of LUAD are found at the advanced stages (5). Despite 
new developments in cancer treatments in recent years, 
including surgical resection, immunotherapy, chemotherapy, 
and radiotherapy for LUAD (1), the prognosis of patients 
with LUAD continues to be disappointing, with the 5-year 
survival rate being less than 20% (6). Indeed, LUAD shows 
great inter- and intratumor heterogeneity, which is a clinical 
challenge driving tumor progression and drug resistance (7).  
Therefore, there is a need to explore novel prognostic 
markers for guiding the genetic classification and clinical 
treatment of LUAD.

Copper is an essential mineral nutrient for living 
organisms, but dysregulation of copper stores, either 
overload or deficiency, can induce oxidative stress and 
cytotoxicity (8). Diverse functions of mitochondria have 
been revealed, such as producing biosynthetic intermediates 
and contributing to cellular stress responses (9). Since the 
assembly of cuproenzymes in mitochondria requires copper, 
this mineral plays a crucial role in mitochondrial function 

and signaling, which can induce multiple forms of cell death, 
including apoptosis and autophagy (10). Recently, researchers 
from the Broad Institute of Harvard and MIT presented 
a copper-induced cell death pathway, named cuproptosis, 
which is mediated by protein lipoylation, and several genes 
involved in cuproptosis were identified. Copper binds to the 
lipoacylated components of the tricarboxylic acid (TCA) 
cycle, which causes abnormal aggregation of lipoylated 
proteins and loss of Fe-S cluster–containing proteins, 
leading to proteotoxic stress and ultimately cell death (11). A 
study has demonstrated the association of copper imbalances 
with tumor burden, progression, incidence, invasion, and 
reoccurrence of the disease (10). A previous study revealed 
a long non-coding RNA signature related to cuproptosis 
and could predict clinical outcomes of LUAD (12). But the 
effect of serum copper levels on lung cancer risk remains 
controversial (13,14). Moreover, the impact of cuproptosis-
related genes on cancer progression and the clinical outcome 
in LUAD is still poorly understood.

Weighted gene co-expression network analysis 
(WGCNA) is a systems biology method that can describe 
the correlation of gene expression patterns across different 
samples (15). WGCNA is based on two hypotheses, the 
first being that genes with similar expression patterns 
may be coregulated, functionally related, or located in 
the same pathway; and the second being that the gene 
network fits into a scale-free distribution. In many studies, 
WGCNA has been used as a powerful method to explore 
the complex relationships between gene expression profiles 
and phenotypes (16). It can be used to find clusters of highly 
correlated genes and to summarize clusters or associate 
different modules using the module eigengene (15). 
Frequently, WGCNA is used in examining various biological 
processes, which is quite helpful for the identification of 
candidate biomarkers or therapeutic targets (17). A recent 
study investigated prognosis-associated key genes in LUAD 
based on WGCNA (18), which inspired us to try to excavate 
the cuproptosis-related prognostic genes. 

In this study, we calculated cuproptosis-related gene set 
enrichment scores for tumor samples using single-sample 
gene-set enrichment analysis (ssGSEA) based on The 
Cancer Genome Atlas (TCGA)-LUAD data set. Modules 
associated with cuproptosis were identified by WGCNA 
and correlation analysis. Univariate Cox regression analysis 
was used to identify prognosis-related genes, the least 
absolute shrinkage and selection operator (LASSO) Cox 
regression model was used to construct a prognostic risk 
model for LUAD, and validation was completed with the 
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GSE72094 data set. The median prognostic risk score 
was used to stratify patients, with overall survival (OS), 
tumor characteristics, and immune cell infiltration being 
compared between the high-risk and low-risk groups. 
Furthermore, correlation analysis of prognostic risk score 
and half-maximum inhibitory concentration (IC50) values 
of drugs in The Genomics of Drug Sensitivity in Cancer 
(GDSC) v. 2 database revealed different drug sensitivities 
across the different risk groups. Collectively, our findings 
could help researchers to better understand the function of 
cuproptosis in the development of LUAD and may inform 
the prognostic prediction and personalized treatment of 
LUAD. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://tlcr.
amegroups.com/article/view/10.21037/tlcr-23-157/rc).

Methods

Data collection

The cuproptosis gene set was obtained from the study of 

Tsvetkov et al. (11) and included FDX1, LIAS, LIPT1, DLD, 
DLAT, PDHA1, PDHB, MTF1, GLS, and CDKN2A. RNA 
sequencing, copy number aberration (CNA), and single-
nucleotide variation (SNV) data from TCGA database 
(https://portal.gdc.cancer.gov; accessed December 2021) 
of LUAD tumors, and microarray data GSE72094 from 
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/; accessed December 2021) 
were downloaded. In addition, the standardized clinical 
information was extracted from TCGA Pan-Cancer 
Clinical Data Resource data set (19). A total of 497 TCGA-
LUAD tumor samples with both sequencing data and 
survival information were retained for subsequent analysis, 
and the sample statistics are shown in Table 1. The GEO 
data set was processed as follows: (I) probes were matched 
to the gene symbols using the annotation provided by the 
platform; (II) probes corresponding to multiple genes were 
removed; (III) if multiple probes matched the same gene 
symbol, the median was considered as the expression value. 
Transcription profiles from non-small-cell lung cancer 
patients during anti-PD-1 treatment were also obtained 
from the GEO database (GSE126044). According to the 
RECIST 1.1 criteria, patients were evaluated and classified: 
as responders and non-responders: patients who showed 
a partial response (PR) or stable condition (SC) over 6 
months were classified as responders, and patients who 
show progressive disease (PD) or SC within 6 months or 
less are classified as non-responders.

Identification of cuproptosis-related hub genes

ssGSEA was performed to derive the enrichment score 
of the cuproptosis gene set using the R package “GSVA” 
(The R Foundation for Statistical Computing), and the 
cuproptosis Z-score of each sample in the TCGA-LUAD 
cohort was calculated. Then, the WGCNA was performed 
with the “WGCNA” R package to build the co-expression 
modules and clarify the relationship of the underlying 
modules. To meet the scale-free topology criteria for 
optimal clustering, the soft-thresholding power beta was 
chosen with a scale-free fit index of 0.85. Modules were 
detected with hierarchical clustering analysis and the mixed 
dynamic cut tree algorithm, and the minimum number of 
genes for each module was set to 30. Pearson correlation 
analysis was used to find those modules significantly 
associated with cuproptosis Z-score. Finally, cuproptosis-
related hub genes with a module membership (MM) >0.6 
and a gene significance (GS) >0.2 were selected [MM 

Table 1 Clinical characteristics of patients in TCGA cohort

Characteristics Variables Number of samples (N=497)

Age <60 years 146 (29.4%)

≥60 years 351 (70.6%)

ALK_eml4 No 206 (41.4%)

Yes 33 (6.6%)

Unknown 258 (51.9%)

EGFR Mut 79 (15.9%)

WT 190 (38.2%)

Unknown 228 (45.9%)

Gender Female 269 (54.1%)

Male 228 (45.9%)

Stage I/II 385 (77.5%)

III/IV 105 (21.1%)

Unknown 7 (1.4%)

Smoking Yes 408 (82.1%)

No 71 (14.3%)

Unknown 18 (3.6%)

ALK and EGFR are genes that are frequently mutated in lung 
cancer. TCGA, The Cancer Genome Atlas; Mut, mutation; WT, 
wild type.

https://tlcr.amegroups.com/article/view/10.21037/tlcr-23-157/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-23-157/rc
https://portal.gdc.cancer.gov
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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measures the relationship of a gene with the particular 
module, and GS incorporates external information into 
the co-expression network (15)]. Finally, to explore the 
functional characteristics of the hub genes, biological 
function enrichment analysis including Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway was applied using the “clusterProfiler” R 
package. When the P value was less than 0.05, the enriched 
pathway was considered to be statistically significant.

Construction of the cuproptosis-related prognostic model

Univariate Cox regression analysis was performed on 
the hub genes using the R package “survival” to identify 
genes related to prognosis (P<0.01), and forest plots were 
created using the package “forestplot”. Then, the R package 
“glmnet” was used for LASSO Cox regression analysis 
to further screen the key prognosis-related genes. The 
LASSO algorithm yields a reliable model by shrinking and 
selecting the variables, making some regression coefficients 
strictly equal to 0, thus preventing overfitting. At last, we 
established a prognostic model and calculated the risk scores 
of the patients according to the normalized expression level 
of each key prognosis-related gene and its corresponding 
regression coefficients. The formula was established as 
follows:

( ) ( )1
*n

i
Risk Score Coef i Exp i

=
=∑ 	 [1]

where Exp (i) represents the expression level of each 
gene, and Coef (i) indicates the corresponding regression 
coefficient. 

Patients were divided into high-risk and low-risk score 
groups according to the median value. Survival analysis was 
performed using the R package “survminer”, and receive 
operating characteristic (ROC) curves were plotted with 
the R package “timeROC” to assess the efficacy of the 
prognostic model. Furthermore, we performed univariate 
and multivariate Cox analyses to explore the independent 
prognostic value of the risk score.

Analysis of immune cell infiltration in the tumor 
microenvironment (TME)

Signature genes of 28 immune cell types including activated 
CD8 T cells, activated dendritic cells, and macrophages were 
acquired from a previous study (20). We used the ssGSEA 
algorithm in the R package “GSVA” (21) to assess the 
proportions of 28 types of infiltrating immune cells based on 

TCGA-LUAD gene expression RNA-sequencing (RNA-
seq) data. The ssGSEA algorithm is a rank-based method 
that defines a score representing the degree of absolute 
enrichment of a particular gene set in each sample (22). In 
addition, the ssGSEA scores for immune cells in different 
groups were also compared using the Wilcoxon rank-sum 
test. Furthermore, we applied the Estimation of Stromal 
and Immune cells in Malignant Tumors using Expression 
data (ESTIMATE) algorithm in the R package “estimate” 
to assess the immune scores, stromal scores, ESTIMATE 
scores, and tumor purity for each LUAD sample (23).

Gene set variation analysis 

To explore differences in cell signaling pathways between 
high and low risk groups, the gene sets h.all.v7.4.symbols.
gmt and c2.cp.kegg.v7.4.symbols.gmt were downloaded 
from the GSEA website (https:// www.gsea-msigdb.
org/gsea/downloads.jsp). |normalized enrichment score 
(NES)|>1, P<0.05, and FDR q<0.25 were considered 
significant. We use the “pheatmap” R package to display the 
results.

Drug sensitivity prediction

The GDSC (http://www.cancerrxgene.org; accessed March 
2022) database is the largest public resource for information 
on drug sensitivity in cancer cells and molecular markers 
of drug response (24). To explore the treatment response 
in different risk groups, drug response prediction was 
conducted in R by using the “oncoPredict” package based 
on the cell line expression data and response information 
in the GDSC v. 2 database and the RNA-seq data of the 
TCGA-LUAD data set. IC50 indicates the effectiveness of 
a substance in inhibiting specific biological or biochemical 
functions. In this study, we estimated the IC50 of drugs 
in the GDSC v. 2 database for each patient with LUAD 
and calculated the Spearman rank correlation coefficient 
between IC50 values and prognostic risk scores.

Statistical analysis

All statistical analyses were implemented using R version 
4.1.2. The Wilcoxon rank-sum test was used to identify 
differentially expressed genes and filter infiltrating immune 
cells. Univariable Cox and LASSO Cox regression analyses 
were used to construct a prognostic risk model. The 

https:// www.gsea-msigdb.org/gsea/downloads.jsp
https:// www.gsea-msigdb.org/gsea/downloads.jsp
http://www.cancerrxgene.org
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Kaplan-Meier method was used to generate survival curves 
for the high-risk and the low-risk groups, and the log-
rank test was used to determine statistically significant 
differences. To test the predictive ability of the prognostic 
signature, the area under the ROC curve (AUC) was 
calculated. For all analyses, P values lower than 0.05 were 
considered statistically significant.

Ethical statement

The relevant data provided by TCGA and GEO databases 
are publicly available and open-ended, and do not require 
the approval of the local ethics committee. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Results

Mutational landscape of the cuproptosis-related gene set

To gain a fundamental understanding of the cuproptosis 
process in tumor development, we performed somatic 
mutation and CNV analysis to detect the alterations of 10 
cuproptosis-related genes in 527 TCGA-LUAD samples. 
Among the 527 samples, 42 (7.97%) harbored somatic 

mutations of the cuproptosis gene set. The mutation 
frequency of CDKN2A (3%) was the highest, followed by 
DLAT and DLD (1%). Missense mutation was the most 
common mutation type, and splice mutation occurred in 
CDKN2A and PDHA1 (Figure 1A). CNV events were general 
in the cuproptosis gene set, and amplifications were more 
frequent in MTF1, GLS, and LIAS, while deletions were 
more frequent in CDKN2A, FDX1, and DLAT (Figure 1B).  
Notably, the prevalence of CNV loss in CDKN2A exceeded 
20%. CDKN2A was a cuproptosis suppressor gene, and 
homozygous deletion of CDKN2A was associated with 
shorter disease-free survival and OS (25). 

We explored the association between the expression 
of the cuproptosis gene set and multiple clinical factors, 
including age, gender, tumor stage, and status. As shown 
in Figure S1, the expression of DLAT and LIPT1 were 
significantly different in the age ≥60 years group and the 
age <60 years group; the expression levels of DLAT, PHDB, 
and DLD were higher in male patients than in females, 
while GLS and LIPT1 showed the opposite tendency. 
DLAT, DLD, and PDHB were highly expressed in tumor 
stage III–IV compared with stage I–II. All of the 10 genes 
were differentially expressed in the tumor group versus the 
normal group.
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Figure 1 Genetic alterations of the cuproptosis gene set in TCGA-LUAD cohort. (A) The SNV frequencies of 10 cuproptosis genes 
within 42 LUAD samples from TCGA data set. (B) The CNV frequencies of 10 cuproptosis genes in TCGA-LUAD cohort. TMB, tumor 
mutation burden; TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; SNV, single nucleotide variation; CNV, copy number 
variant.

https://cdn.amegroups.cn/static/public/TLCR-23-157-Supplementary.pdf


Translational Lung Cancer Research, Vol 12, No 4 April 2023 759

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2023;12(4):754-769 | https://dx.doi.org/10.21037/tlcr-23-157

Identification of hub genes and functional enrichment 
analysis

First, we calculated the cuproptosis Z-score for each patient 
in the TCGA-LUAD cohort using ssGSEA. Then, co-
expression modules were built with WGCNA, and Pearson 
correlation was applied to evaluate the relationships of the 
underlying modules, cuproptosis Z-score, and clinical traits 
(age, gender). As a result, we identified 32 modules with 
the optimal soft threshold power =5 (Figure 2A,2B). Of the  
32 modules, 21 were significantly correlated with 
cuproptosis Z-scores (P<0.05), of which 8 were positively 
correlated and 13 were negatively correlated (Figure 2C). 
To screen for the hub genes associated with cuproptosis, we 
selected the MEpurple module with the most significant 
positive correlation (Pearson correlation coefficient = 0.458) 
and the MEpink module with the most significant negative 
correlation (Pearson correlation coefficient = –0.326). A 
total of 238 hub genes with MM >0.6 and GS >0.2 were 
obtained, including 107 genes in the MEpurple module and 
131 genes in the MEpink module (Figure 2D,2E).

Subsequently, biological function enrichment analysis 
including GO and KEGG pathway enrichment analyses 
were conducted to explore the functional characteristics 
of the 238 hub genes (Figure 3). The GO analysis 
results revealed that the hub genes were significantly 
enriched in the mitochondrial inner membrane term, and 
mitochondrial protein-containing complex term related 
to cell component (CC), which corresponded with the 
fact that copper-induced cell death was dependent on 
mitochondrial respiration. Molecular function (MF) terms 
of the hub genes included extracellular matrix structural 
constituent, cytokine binding, and transforming growth 
factor (TGF) beta binding, while biological process 
(BP) terms mainly included endothelium development, 
extracellular matrix assembly, smooth muscle cell 
differentiation, and lymph vessel development. According 
to previous reports, TGF-beta is an important regulator 
of the extracellular matrix in the developing lung (26), 
and cells and extracellular matrix in the airway responded 
both passively and actively to the mechanical stimulation 
induced by smooth muscle contraction in chronic 
obstructive pulmonary disease (27). KEGG signaling 
pathways included mainly cell adhesion molecules, cGMP−
PKG signaling pathway, oxidative phosphorylation, and 
diabetic cardiomyopathy. Cell adhesion molecules have 
been shown to play an important role in inflammatory 

response, angiogenesis, and tumor progression (28). 

Construction of the prognostic risk model for LUAD

The prognostic effects of 238 hub genes were analyzed using 
univariate Cox regression, and 35 prognosis-related hub 
genes were screened out for subsequent model construction 
(P<0.01). The TCGA-LUAD patients were divided into 
high-risk and low-expression groups according to the 
median expression values of each prognosis-related gene. 
The forest plot and corresponding survival curves of the top 
10 genes are shown in Figure S2. LASSO Cox regression 
was then performed to reduce the overfit and the number 
of genes for further analysis (Figure S3A). Afterward, we 
screened out the 7 best predictors associated with LUAD 
prognosis, which included PTGES3, NMUR1, CLEC3B, 
METTL7A, DNAAF9, C1QTNF7, and RPE, with PTGES3 
and RPE being the risk factors and the others being the 
protective factors (Figure S3B). The two risk genes belong 
to the MEpurple module that showed the most significant 
positive correlation with cuproptosis. The detailed functional 
annotation analysis (website: https://cdn.amegroups.cn/
static/public/tlcr-23-157-01.xlsx) indicated the two risk 
genes tend to act in the intracellular anatomical structure 
and are involved in cellular metabolic processes which might 
further regulate the cuproptosis process. On the contrary, 
the five protective genes belong to the MEpink module with 
the most significant negative correlation with cuproptosis. 
And the five protective genes are involved in response to 
stimulus and regulation of BP, they tend to function in the 
cell periphery and extracellular matrix. Expression levels of 
these genes and corresponding coefficients derived from the 
LASSO Cox regression model were used to calculate the risk 
score for each patient as following: Risk Score = RPE × 0.1371 
– CLEC3B × 0.1338 – METTL7A × 0.0873 + PTGES3 × 
0.2231 – NMUR1 × 0.2774 – C1QTNF7 × 0.007 – DNAAF9 
× 0.0162. The TCGA-LUAD patients were divided into 
high-risk and low-risk groups based on the median risk 
score. Kaplan-Meier analysis indicated that patients in the 
low-risk group experienced significantly better survival than 
did those in the high-risk group (Figure 4A). AUC of the 
risk model was 0.682 at 1 year, 0.637 at 3 years, and 0.692 at  
5 years (Figure 4B).  In addition, the 7 genes were 
differentially expressed between the high-risk and low-risk 
groups, PTGES3 and RPE were highly expressed in the 
high-risk group, and the other 5 genes were highly expressed 
in the low-risk group (Figure 4C-4E).

https://cdn.amegroups.cn/static/public/TLCR-23-157-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-157-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-157-Supplementary.pdf
https://cdn.amegroups.cn/static/public/tlcr-23-157-01.xlsx
https://cdn.amegroups.cn/static/public/tlcr-23-157-01.xlsx
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External validation of the prognostic risk model

To validate the predictive value and robustness of the 
prognostic risk model, we downloaded the GSE72094 data 
set as a validation set and calculated the risk score with the 
same formula for each patient with LUAD. Samples in 
GSE72094 were divided into high-risk and low-risk groups 
according to the median risk score, and consistent with the 
results in the TCGA cohort, patients in the high-risk group 
showed significantly poorer OS than did the patients in the 
low-risk group (Figure S4A). The AUCs for 1-year, 3-year, 
and 5-year OS were 0.641, 0.665, and 0.719, respectively 
(Figure S4B). Prognostic risk genes were also highly 
expressed in the high-risk group, while protective genes were 
highly expressed in the low-risk group (Figure S4C-S4E). 
Overall, the results demonstrated that the risk score could 
predict OS in LUAD.

Independent prognostic role of the risk score

To explore the independent prognostic value of the risk 
score and several clinicopathological variables (gender, 
age, TNM stage and smoking), univariate and multivariate 

Cox regression analyses were performed on the TCGA-
LUAD data set. The results indicated that the TNM stage 
and risk score calculated from the prognostic risk model 
were independent prognostic factors for OS (Figure S5A). 
The risk score was consistently an independent prognostic 
factor in the GSE72094 cohort (Figure S5B). Furthermore, 
we completed the Wilcoxon rank-sum test and Kruskal-
Wallis test to investigate whether our risk model correlated 
with the clinical characteristics and found that the high-
risk group had a more advanced TNM stage and a higher 
proportion of males (Figure S5C-S5J).

Tumor immunity relevance analysis

Gene set variation analysis (GSVA) was performed based on 
the hallmark gene sets obtained from the MsigDB database 
(https://www.gsea-msigdb.org/gsea/index.jsp) to explore the 
molecular mechanisms of different risk groups in the TCGA-
LUAD cohort. We found that the enrichment scores of 
most gene sets including ADIPOGENESIS, ANDROGEN 
RESPONSE, COAGULATION, MTORC1 SIGNALING, 
P53 PATHWAY, and PI3K AKT MTOR SIGNALING 
varied significantly between high-risk and low-risk 
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groups (Figure S6). A previous study has revealed that the 
accumulation of copper inhibits the PI3K/AKT/mTOR 
pathway, which activates cellular autophagy and disrupts 
mitochondrial dynamics (29). Moreover, a high dose of 
copper can activate p53-independent apoptosis through the 
induction of nucleolar stress in human cell lines (30), yet the 
role of the p53 pathway in cuproptosis remains understudied.

Further, the association between the risk score and 
immune response was investigated. At first, we obtained 
the ESTIMATE score, immune score, stromal score, and 
tumor purity of each TCGA-LUAD patient based on the 
ESTIMATE algorithm (23). The high-risk group showed 

significantly lower ESTIMATE score, immune score, and 
stromal score, which indicated fewer immune and stroma 
cell infiltrated. In contrast, tumor purity was significantly 
higher than in the low-risk group (Figure 5A). Spearman 
correlation analysis supported the risk score negatively 
associated with immune and stromal cell infiltration while 
positively associated with tumor purity (Figure 5B). Then 
we calculated infiltration level of specific immune cell 
types based on the expression of their signature genes 
using ssGSEA. We found most of the immune cell types 
were reduced in the high-risk group. However, it enriched 
infiltration of CD56 bright NK cells, activated CD4 T 

Figure 4 Efficacy assessment of the prognostic model. (A) Kaplan-Meier curves for overall survival of the low-risk and high-risk groups in 
the TCGA-LUAD cohort. (B) Time-dependent ROC analysis curves of the signature for 1-year, 3-year, and 5-year OS in the TCGA data 
set. (C) Distribution of risk scores for patients with TCGA. (D) Survival status of each sample in TCGA-LUAD cohort. (E) Heatmap of 
mRNA expression of 7 prognostic genes in TCGA cohort. TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; HR, hazard 
ratio; ROC, receive operating characteristic; AUC, area under the ROC curve; CI, confidence interval; OS, overall survival.
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cells, effector memory CD4 T cells, and memory B cells  
(Figure 5C). It is known that the cytotoxic activity of CD56 
bright NK cells is significantly lower than that of CD56 dim 
cells and they express less perforin, granzymes and cytolytic 
granules (31). These results suggested that a suppressed or 
not fully activated immune microenvironment in the high-
risk group with highly expressed cuproptosis indicator 
genes. 

In addition, we investigated the potential of the risk 
score for predicting immunotherapy response. We obtained 
the transcription profiles from 18 non-small-cell lung 
cancer patients during anti-PD-1 treatment from the 
GEO database (GSE126044) and compared the risk score 
between responders and non-responders. The results 
indicated a significantly higher risk score in non-responders 
(Wilcoxon rank-sum test P=0.038). Furthermore, the 
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predictive efficiency of the risk score for immunotherapy 
response achieved AUC 0.801 (Figure S7). These results 
suggested the cuproptosis-related risk score could further 
serve as a potential biomarker for immunotherapy response.

Besides, we analyzed the genomic and transcriptomic 
variations including (SNVs and CNVs in the high-risk 
and low-risk groups. The occurrence of CNV in TCGA-
LUAD is summarized in Figure 6A and Figure 6B. The 
analysis of CNV alteration indicated a higher frequency in 
the high-risk group (Figure 6C). An oncoplot showed the 
most frequently mutated genes in the high-risk and low-risk 
groups (Figure 6D). As illustrated, TP53 (48%), TTN (45%), 
MUC16 (39%), CSMD3 (37%), and RYR2 (36%) were more 
frequently mutated and presented at a higher mutation 
frequency in the high-risk group. 

Drug sensitivity analysis 

Due to the high heterogeneity of LUAD, different patients 
have different therapeutic responses to the same drug. In 
this study, we predicted the sensitivity of TCGA-LUAD 
patients to drugs in the GDSC v. 2 database using the R 
package “oncoPredict” based on the IC50 of each sample. 
The GDSC v. 2 database is the largest public resource for 
information on drug sensitivity in cancer cells and molecular 
markers of drug response, and contains information on the 
sensitivity and response of different tumor cells from the 
cell, drug, and molecule levels. Results of the Spearman 
correlation analysis between IC50 and the risk score showed 
that the estimated IC50s differed significantly between the 
2 groups, suggesting a greater sensitivity to PRT062607, 
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BMS-754807, doramapimod, GSK269962A, ribociclib, 
and nutlin-3a (−) when the low-risk group had lower IC50s 
than those of the high-risk group (Figure 7A); meanwhile, 
BI-2536, UMI-77, MK-1775, savolitinib, docetaxel, and 
sepantronium were more effective for high-risk patients 
(Figure 7B).

Discussion

LUAD is one of the most aggressive and rapidly lethal 
tumor types, and patients with this disease have an OS of less 
than 5 years (32). Over the past few decades, many newly 
identified biomarkers or gene signatures have been found 
that have the potential to predict the prognosis of LUAD, 

and novel treatments for LUAD, including targeting 
therapy, immunotherapy, chemotherapy, and radiotherapy, 
have been developed (6). However, the prognosis of LUAD 
continues to be poor for the following reasons: (I) the effect 
of these strategies is limited by inadequate knowledge of 
the biological features of lung cancer, (II) most prognostic 
signatures are still in the molecular research phase and have 
not yet been applied in clinical practice, (III) treatment 
response varies widely between patients due to the 
heterogeneity of LUAD, and (IV) a large proportion of 
patients with LUAD are found at an advanced stage (1,5,6). 
Thus, uncovering reliable prognostic indicators for the 
prognosis of LUAD would be of great clinical significance. 
Cuproptosis is a newly recognized type of programmed cell 
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death, in which intracellular copper accumulation triggers 
the aggregation of mitochondrial lipoylated proteins and 
the destabilization of the Fe–S cluster proteins, thus leading 
to cell death (11). A growing body of evidence has linked 
copper signaling to cell proliferation, tumor growth, and 
tumor metastasis. For example, elevated serum copper 
levels may increase the risk of lung cancer, as serum copper 
levels were found to be higher in patients in LUAD than 
in controls (8,10). Although many studies have revealed the 
association between copper and cancer development, the 
role of cuproptosis in LUAD has not yet been elucidated. 
Therefore, it is essential to identify robust signatures to 
enhance the prognostic prediction of patients with LUAD. 
This work thus established a novel cuproptosis-related 
7-gene prognostic signature in the TCGA-LUAD cohort 
and validated it in the GSE72094 data set. 

In the study, we obtained 10 cuproptosis genes identified 
in a previous study (11), and ssGSEA was used to calculate 
the cuproptosis Z-score for each LUAD patient in the 
TCGA database. Meanwhile, 32 co-expression modules 
were built by WGCNA, and the Pearson correlation 
coefficient was applied to evaluate the relationships between 
these modules and the cuproptosis Z-score. Subsequently, 
the MEpurple module and MEpink module were selected 
as being most significantly correlated with the Z-score. 
Functional enrichment analysis of 238 hub genes in the 
2 modules showed that they were involved in a series of 
cuproptosis and LUAD pathogenesis-related pathways, 
such as TGF-beta binding, cell adhesion molecules, and 
mitochondrial inner membrane. Therefore, focusing 
on these biological functions and pathways would help 
us elucidate the underlying mechanisms of cuproptosis 
in LUAD. Next, we analyzed the prognostic values of 
238 hub genes in TCGA data set using univariate Cox 
regression, and 35 hub genes were found to be significantly 
correlated with OS. Furthermore, the 7 genes most 
associated with prognosis were identified by LASSO Cox 
regression and included PTGES3, NMUR1, CLEC3B, 
METTL7A, DNAAF9, C1QTNF7, and RPE. Moreover, 
high expression of NMUR1 ,  CLEC3B ,  METTL7A , 
DNAAF9, and C1QTNF7 were found to be associated with 
good prognosis, while high expression of PTGES3 and 
RPE were found to be associated with poor prognosis. We 
constructed a novel risk signature based on the 7 genes. 
CLEC3B is a member of the CLEC family, and abnormal 
expression of CLEC3B is related to many cancer types, with 
a lower expression of CLEC3B in LUAD being associated 
with attenuated cell adhesion capacity (33). Furthermore, 

the protein encoded by CLEC3B may be related to 
calcium ion binding which can affect copper binding (34). 
Gao et al. found PTGES3 messenger RNA (mRNA) and 
protein expression to be significantly elevated in LUAD 
tissues compared with normal lung tissues (35). Ma et al. 
revealed that the downregulated NMUR1 in patients with 
LUAD negatively affected the OS rate and that the high 
expression of NMUR1 might facilitate antitumor immunity 
in the LUAD microenvironment (36). Guo et al. reported 
METTL7A to be significantly downregulated and involved 
in the development of LUAD (37). Furthermore, the 
expression and the prognostic role of the 7 genes at the 
protein level warrant further investigation. Our results, 
viewed in conjunction with the literature, suggest that the 
prognostic signature is linked with LUAD. Low-risk scores 
and high-risk scores show significant survival differences, 
and patients with high-risk scores have worse outcomes  
in LUAD.

The TCGA-LUAD samples were divided into high-
risk and low-risk groups according to the median risk score, 
and patients in the high-risk group showed significantly 
poorer survival than did the patients in the low-risk group. 
In addition, the 7 genes were found to be differentially 
expressed between the 2 groups, and prognostic risk genes 
PTGES3 and RPE were highly expressed in the high-
risk group while the other 5 protective genes were highly 
expressed in the low-risk group. Additionally, the prognosis 
predictive and independent performance of our signature 
was validated not only in the TCGA-LUAD cohort but also 
in the GSE72094 cohort. Therefore, our prognostic risk 
model might be an effective marker for LUAD prognosis 
prediction. 

The TME has garnered increased attention due to its 
association with tumor growth, invasion, and metastasis (38). 
Furthermore, different immune cell types play different roles 
in the antitumor and tumor immune escape processes (39). 
In the present study, ssGSEA was employed to investigate 
the relationship between our prognostic model and immune 
cell infiltration. Higher infiltration levels of activated CD4 
T cells, activated dendritic cells, and memory B cells were 
observed in the high-risk patients. The high proportion of 
eosinophil, natural killer cells, and mast cells displayed a 
negative correlation with the prognostic model, revealing 
that the model may serve as a predictor for increased immune 
cell infiltration. Furthermore, the result of the ESTIMATE 
analysis showed that the high-risk group had lower immune 
scores and higher tumor purity. We also detected significant 
differences in the mutation profiles between the high- and 
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low-risk groups: the high-risk group of LUAD tended to 
have a higher frequency of CNVs and SNVs, especially in 
TP53, TTN, and MUC16. TP53 encodes a tumor-suppressor 
protein, and mutations in this gene are associated with 
a variety of human cancers. Mutation of TP53 occurs in 
approximately 50.00% of patients with LUAD and leads to a 
weakened immune response in early-stage LUAD (39). Wu 
et al. demonstrated that patients with LUAD and MUC16 
peptide mutants have worse outcomes (40). TTN encodes a 
large abundant protein of striated muscle, and the expression 
of TTN has been found to be significantly lower in LUAD 
and to be associated with worse survival (41). Additionally, 
the TTN mutant has been linked to high immunogenicity 
and inflammation of the TME in patients with LUAD (42). 

Finally, drug prediction was completed using the R 
package “oncoPredict” to identify different candidate 
drugs for high-risk and low-risk patients. Drugs including 
PRT062607, BMS-754807, doramapimod, GSK269962A, 
ribociclib, and nutlin-3a (−) appeared to be more effective 
for the low-risk group, while the high-risk group appeared 
to be more sensitive to BI-2536, UMI-77, MK-1775, 
savolitinib, docetaxel, and sepantronium. As personalized 
therapy emerges into the forefront of cancer treatment, 
our study provides a potential tool for the selection of 
therapeutic approaches for patients with LUAD. 

Conclusions

We used comprehensive bioinformatics analysis to develop 
a prognostic signature based on cuproptosis-related genes, 
thus providing a potential tool to predict the clinical 
prognosis of patients with LUAD. 
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Figure S1 Association between the expression of 10 cuproptosis genes and clinical characteristics. The expression distribution of cuproptosis 
genes in different (A) age, (B) sex, (C) tumor stage, and (D) tumor status groups in TCGA-LUAD cohort. ns: not significant; *, P<0.05; **, 
P<0.01; ***, P<0.001; ****, P<0.0001. 

A B

C D

Supplementary



© Translational Lung Cancer Research. All rights reserved.  https://dx.doi.org/10.21037/tlcr-23-157

Figure S2 Identification of the prognosis-related genes. (A) The forest plot of the top 10 prognosis-related genes. (B) Survival curves for the 
high- and low-expression groups of the top 10 prognosis-related genes.
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Figure S3 Establishment of the prognostic signature. (A) Selection of tuning parameter (λ) in the LASSO Cox regression using 10-fold 
cross-validation via minimum criteria (Each curve represents the change of each gene coefficient with the increase of penalty value. The 
larger the lambda, the more severely the linear model is punished.). (B) LASSO regression coefficients for the 7 prognostic genes. The color 
of the gene names indicated the key module they belong to.
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Figure S4 Validation of the prognostic risk model in GSE72094. (A) Kaplan-Meier curves for overall survival (OS) of the low-risk and high-
risk groups. (B) Time-dependent ROC analysis of the prognostic signature. (C) Distribution of risk scores for patients in the GSE72094 data 
set. (D) Survival status of each sample in the validation set. (E) Heatmap of mRNA expression of 7 prognostic genes.
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Figure S5 Independence of the risk score. (A) Univariate and multivariate Cox regression analyses of risk score and clinical factors in 
TCGA-LUAD cohort and (B) in the GSE72094 data set. (C-J) Distribution of risk scores in the different clinical characteristic groups.
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Figure S6 Heatmap of GSVA enrichment analysis. Enrichment score of hallmark gene sets between the high-risk and low-risk groups in 
TCGA-LUAD. ns: not significant; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001.
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Figure S7 The risk score predicted immunotherapy response. (A) Comparison of the risk score between responders and non-responders. 
Wilcoxon rank-sum test was used. (B) AUC indicated the predictive potential of risk score.
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